BACKEND DEVELOPER
INTERVIEW GUIDE

2026

SLAWOMIR PLAMOWSKII

Node.js Backend Developer Interview Guide 2026
Copyright © 2026 EasylInterview.me
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means—electronic, mechanical, photocopying, recording, or otherwise—without prior written
permission.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

The information in this book is distributed on an “as is” basis, without warranty.

First Edition: January 2026

https://easyinterview.me

https://easyinterview.me

Contents

1.1 NodejsCore CoONCepts v v v it e e

Q1.2: Describe the role of the single-threaded event loop in Nodejs.
Q1.3: How does Node.js handle I/O operations differently from multi-threaded servers?
Q1.4: What is the difference between the V8 engine and Node,js?
Q1.5: What is libuv and what role does it play in Nodejs?
Q1.6: What is the global objectin Node,js?

1.2 Event Loop and Asynchronous Programming
Q1.7: Explain the phases of the Nodejseventloop.
Q1.8: What is the difference between process.nextTick() and setimmediate()?
Q1.9: What is callback hell and how do you avoid it?

Q1.11: How does async/await simplify asynchronous code?
Q1.12: What is the difference between parallel and sequential execution of async opera-
HONS? o e e e e e e

1.3 Modules and Package Management
Q1.13: What are the key differences between CommonlJS and ES Modules?
Q1.14: What is npm and why is it vital for Node js development?
Q1.15: What is the purpose of the packagejsonfile?
Q1.16: What is the difference between dependencies and devDependencies?
Q1.17: What is package-lockjson and why is it important?
Q1.18: What are peer dependencies and when would you use them?
Q1.19: What is npm audit and how do you fix security vulnerabilities?

1.4 Built-in Modules

Q1.22: What are streams in Node.js and what types exist?
Q1.23: What is the Buffer class and when would you use it?
Q1.24: How do you handle environment variables in Nodejs?

1.5 ErrorHandling
Q1.25: How do you handle errors in synchronous vs asynchronous code?
Q1.26: What is the difference between operational errors and programmer errors? . . .
Q1.27: How do you handle uncaught exceptions and unhandled promise rejections? . .
Q1.28: What is the error-first callback pattern?
Q1.29: How do you create custom error classes in Node,js?

2 TypeScriptforBackend
2.1 Type System BasiCs.

=

O o0 NOoOUTUl UTHAN WMNDN 2 2

CONTENTS i

Q2.1: What is TypeScript and why use it for backend development? 25
Q2.2: What are the basic data types in TypeScript? 26
Q2.3: What is type inference in TypeScript? e 27
Q2.4: What is an interface in TypeScript? 27
Q2.5: What are type aliases and how do they differ from interfaces? 28
Q2.6: What are union types and intersectiontypes? 29
Q2.7: How do you define optional and readonly properties? 30

2.2 Advanced Types 31
Q2.8: What are utility types (Partial, Required, Pick, Omit, Record)? 31
Q2.9: What is the never type and when would you use it? 32
Q2.10: What is type narrowing and type guards? 33
Q2.11: What are conditional types and how do you use them? 34
Q2.12: What are mapped types? o it e 35

23 GENEIICS . . . v ot 36
Q2.13: What are generics in TypeScript and how do you use them? 36
Q2.14: What are generic constraints? o . e 37
Q2.15: How do you use generics with interfaces and classes? 38

24 Decorators& Metadata 39
Q2.16: What are decorators in TypeScript and how do you use them? 39

2.5 Configuration & Build 41
Q2.17: What are the important tsconfig.json options for backend projects? 41
Q2.18: What is strict mode and why should youuse it? 42

2.6 TypeSafety Patterns 43
Q2.19: What is the difference between any and unknown? 43
Q2.20: What are assertion functions? 44
Q2.21: How do you handle third-party libraries without TypeScript types? 45
Q2.22: How do you configure path aliases in TypeScript? 46

3 Express.js&RESTAPIs e 49
3.1 ExpressFundamentals. 49
Q3.1: How do you set up a basic Express.js application? 49
Q3.2: What is the difference between app.use() and app.get()/app.post()? 50
Q3.3: What are route parameters and query parameters? 50
Q3.4: What is the difference between req.params, req.query, and req.body? 51
Q3.5: How do you implement nested routes with Express Router? 51

3.2 Middleware 52
Q3.6: What are middleware functions and how do theywork? 52
Q3.7: What is the middleware executionorder? 53
Q3.8: What is the difference between route handlers and middleware? 53
Q3.9: How do you parse different request body types? 54

3.3 RESTAPIDesIgn e 55
Q3.10: What are REST API design best practices? 55
Q3.11: What HTTP status codes should youuse? 56
Q3.12: What is the difference between PUT and PATCH? 56
Q3.13: How do you implement pagination, filtering, and sorting? 57
Q3.14: How do you versionyour APIS? e 58

34 ErrorHandling 59
Q3.15: What is error handling middleware in Express? 59

iv CONTENTS
Q3.17: How do you create a centralized error handling mechanism? 60

3.5 Authentication & Authorization 61
Q3.18: What is the difference between session-based and token-based authentication?. 61
Q3.19: How do you implement JWT-based authentication? 62
Q3.20: How do you implement role-based access control (RBAC)? 62
Q3.21: What are refresh tokens and how do you use them? 63

3.6 Validation & Performance. 64
Q3.22: How do you implement request validation? 64
Q3.23: What is the difference between validation and sanitization? 65
Q3.24: How do you implement rate limiting? 66
Q3.25: How do you enable response compression? 66

3.7 APIDocumentation 67
Q3.26: How do you document APIs with OpenAPI/Swagger? 67

4 SQL&PostgreSQL 69
41 SQLFundamentals 69
Q4.1: What is SQL and what are the main types of SQL commands? 69

Q4.2: What is a primary key and what is a foreign key? 70
Q4.3: What are NULL values and how do they behave inSQL? 70

42 Queries &JOINS 71
Q4.4: What is the difference between WHERE and HAVING clauses? 71
Q4.5: What are the different types of JOINsinSQL? 71

Q4.6: What is a self-join and when would you use it? 72
Q4.7: What is the difference between IN and EXISTS operators? 73

43 Advanced Queries 74
Q4.8: What are Common Table Expressions (CTES)? 74
Q4.9: When would youuse arecursive CTE? v i i it 74
Q4.10: What are window functions and how do they differ from aggregates? 75
Q4.11: Explain ROW_NUMBER(), RANK(), and DENSE_RANK(). 75
Q4.12: How do you use LAG() and LEAD() functions? 76

44 SchemaDesign 77
Q4.13: What is database normalization? Lo L. 77
Q4.14: What is denormalization and when mightyouuseit? 78

45 Indexing & Performance 79
Q4.15: What is a database index and how does it improve performance? 79
Q4.16: What are the trade-offs of usingindexes? 79
Q4.17: How do you identify and analyze slow queries? 80

4.6 Transactions & CONCUITENCY v v v vt i et et e e e e e e e e 81
Q4.18: What are ACID properties in database transactions? 81
Q4.19: What are the different transaction isolation levels? 81
Q4.20: What is a deadlock and how do you preventit? 82

47 PostgreSQL Features. e 83
Q4.21: What is MVCC and how does PostgreSQL implementit? 83
Q4.22: What is the difference between VACUUM and VACUUM FULL? 84
Q4.23: What is the difference between JSON and JSONB in PostgreSQL? 84
Q4.24: What types of indexes does PostgreSQL support? 85
Q4.25: What is connection pooling and why is PgBouncer important? 86

CONTENTS v

51 Document Model 87
Q5.1: What is MongoDB and how does it differ from relational databases? 87
Q5.2: What is BSON and how does itrelateto JSON? 88
Q5.3: What is the _id field and Objectld in MongoDB? 88

52 CRUD Operations 89
Q5.4: How do you insert documents in MongoDB? 89
Q5.5: Explain the different query operatorsin MongoDB. 90
Q5.6: What are the different update operators? 90
Q5.7: What is an upsert operation? e 91

5.3 Aggregation Pipeline 92
Q5.8: What is the aggregation framework in MongoDB? 92
Q5.9: How does $lookup work for joining collections? 93
Q5.10: What is $unwind and whenwould you use it? 93
Q5.11: What is $facet for running multiple pipelines? 94

54 Indexing 95
Q5.12: What are the different types of indexes in MongoDB? 95
Q5.13: What is the ESR rule for compound indexes? 96
Q5.14: What is a covered query inMongoDB? Lo o 96

55 DataModeling 97
Q5.15: What is embedding vs referencing in MongoDB? 97
Q5.16: What is schema validation in MongoDB? 98

5.6 Replication & Sharding 99
Q5.17: What is a replica setin MongoDB? oo 99
Q5.18: What is sharding and when would youuse it? 100

5.7 Transactions & CONSiSteNCy o o i 101
Q5.19: What are multi-document transactions in MongoDB? 101
Q5.20: What are read and write concerns in MongoDB? 102

6 Redis 105

6.1 RedisFundamentals 105
Q6.1: What is Redis and what are its primary use cases? 105
Q6.2: Explain Redis's single-threaded architecture and how it achieves high performance. 106

6.2 DataStructures L 107
Q6.3: What are the basic data typesinRedis? 107
Q6.4: What are Sorted Sets (ZSets) and when would you use them? 107
Q6.5: What are Redis Streams and when would you use them? 108

6.3 Caching Patterns 110
Q6.6: What are the common caching strategies? 110
Q6.7: How do you implement the cache-aside pattern with Redis? 110
Q6.8: How do you handle cache stampede (thundering herd) problems? 112
Q6.9: What are the eviction policiesinRedis? 113

6.4 Pub/Sub & Streams 114
Q6.10: What is Redis Pub/Sub and what are its limitations? 114

6.5 Persistence e 115
Q6.11: What are the differences between RDB and AOF persistence? 115

6.6 Transactions & Lua. 116

Q6.12: What are Redis transactions and how do they differ from database transactions? 116
Q6.13: What are Lua scripts in Redis and why would you use them? 117

Vi CONTENTS
6.7 Cluster & Sentinel 119
Q6.14: What is Redis Sentinel and what problems does itsolve? 119
Q6.15: What is Redis Cluster and how does it differ from Sentinel? 120

6.8 Common Patterns 121
Q6.16: How do you implement a rate limiter using Redis? 121
Q6.17: How do you implement distributed locks with Redis? 122
Q6.18: What is pipelining in Redis and how does it improve performance? 124

7 Docker 127
7.1 Container Fundamentals 127
Q7.1: What is Docker and what problems does it solve? 127
Q7.2: What is the difference between Docker containers and virtual machines? 128
Q7.3: What is a Docker image and how does it relate to a container? 129
Q7.4: What are Docker image layers and how do they work? 129

7.2 Dockerfile Best Practices 131
Q7.5: What is the difference between RUN, CMD, and ENTRYPOINT? 131
Q7.6: What is a multi-stage build and why would you useit? 132
Q7.7: What is the difference between ADD and COPY instructions? 132
Q7.8: What are the best practices for writing efficient Dockerfiles? 133

7.3 Docker COMPOSE v o v e e e 135
Q7.9: What is Docker Compose and what problems does itsolve?. 135
Q7.10: How do you manage dependencies between services in Docker Compose? . .. 136
Q7.11: How do you use environment variables in Docker Compose? 137

74 Networking 138
Q7.12: What are the default Docker network drivers? 138
Q7.13: How do containers communicate with each other? 139
Q7.14: How do you expose container portstothehost? 140

7.5 Volumes & Storage e 142
Q7.15: What are Docker volumes and why are they important? 142
Q7.16: What is the difference between volumes, bind mounts, and tmpfs? 143

7.6 SECUitY . o o e e 144
Q7.17: What are the security concerns when using Docker? 144
Q7.18: How do you run containers as non-root users? 145
Q7.19: How do you manage secretsin Docker? 146

7.7 Production Considerations 147
Q7.20: How do you implement health checks for containers? 147
Q7.21: What is container orchestration and why is it needed? 148
Q7.22: How do you implement zero-downtime deployments with Docker? 149

8 Testing 153
8.1 Testing Fundamentals 153
Q8.1: What is the Test Pyramid and why is it important for structuring tests? 153
Q8.2: What is the Testing Trophy and how does it differ from the Test Pyramid? 154
Q8.3: What are the FIRST principles for writing good unittests? 154
Q8.4: Explain the AAA (Arrange-Act-Assert) patternintesting. 155

8.2 UnitTestingwithlJest 156
Q8.5: How do you write and structure unit testsinlJest? 156
Q8.6: How do you test asynchronous code inJest? 157

Q8.7: How do you use setup and teardown hooksinJest? 157

CONTENTS

8.3

8.4

8.5

8.6

8.7

Mocking & Test Doubles
Q8.8: Explain the differences between mocks, stubs, fakes, and spies.
Q8.9: How do you mock modules, functions, and classesinJest?
Q8.10: What is over-mocking and how doyou avoid it?

Test-Driven Development
Q8.14: Explain the TDD (Test-Driven Development) cycle.
Q8.15: What are the benefits and challenges of TDD?

Code Coverage v i
Q8.16: What are the different types of code coverage metrics?
Q8.17: Why is 100% code coverage not alwaysagoodgoal?

Performance Testing
Q8.18: What are the different types of performancetests?

9 Security

9.1

9.2

9.3

94

9.5

9.6

OWASP Top 10 e e e e e e
Q9.1: What is the OWASP Top 10 and why is it important for developers?
Q9.2: What is SQL Injection and how do you prevent it in Nodejs?
Q9.3: What is Cross-Site Scripting (XSS) and what are the different types?

Secure Headers
Q9.14: What is Content Security Policy (CSP) and how do you implementit?
Q9.15: What is HSTS and why is it important?
Q9.16: What is CORS and how does itwork?
Q9.17: What security headers should every web application implement?

Input Validation & Sanitization
Q9.18: What is input validation and why is it critical for security?
Q9.19: How do you prevent injection attacks beyond SQL injection?
Q9.20: What is the principle of least privilege and how do you applyit?

10 DevOps & Git e

vii

166

186
187
188
189

viii

10.1

10.2

10.3

10.4

10.5

10.6

CONTENTS

Git Fundamentals 199
Q10.1: What is a Git commit and how does Git store history? 199
Q10.2: What is the difference between merge and rebase? 200
Q10.3: How do you resolve merge conflicts? 201
Git Workflows 203
Q10.4: What is Git Flow and when should youuse it? 203
Q10.5: What is trunk-based development? 204
Q10.6: What are feature branches and pull requests? 205
CI/CD Pipelines o 207
Q10.7: What is CI/CD and why is it important? 207
Q10.8: How do you set up a comprehensive GitHub Actions pipeline? 208
Q10.9: What are the stages of a typical CI/CD pipeline? 210
Q10.10: How do you handle secrets in CI/CD pipelines? 213
Deployment Strategies 215
Q10.11: What is blue-green deployment? 215
Q10.12: What is canary deployment? 216
Q10.13: Whatis rolling deployment? 218
Q10.14: How do you implement zero-downtime deployments? 219
Monitoring & Logging 221
Q10.15: What are the three pillars of observability? 221
Q10.16: How do you implement structured logging in Nodejs? 223
Q10.17: What metrics should you monitor for a Nodejs application? 224
Infrastructure L 227
Q10.18: What is Infrastructure as Code (1aC)? o v v i v i i i 227
Q10.19: What are the main cloud deployment options for Nodejs? 228
Q10.20: How do you implement horizontal scaling for Node.js applications? 229

Additional Resources 233

How to Use This Guide

This guide contains carefully curated interview questions for Node.js Backend Developer posi-
tions. Whether you're preparing for your first junior role or aiming for a senior backend architect
position, you'll find relevant questions organized by topic and difficulty.

Difficulty Levels

Questions are marked with difficulty badges:
* [unior] — Entry-level fundamentals. If you're just starting out, master these first.
 [Mid] — Intermediate concepts requiring practical experience. Expected for mid-level roles.

« [Senior] — Advanced topics covering architecture, scalability, and system design. Required
for senior positions.

Recommended Study Approach

1. Assess your level — Skim through chapters and note which questions you can answer
confidently.

2. Focus on gaps — Spend more time on topics where you struggled.
3. Practice out loud — Explain answers as if in an interview. This builds confidence.
4. Study the code — Don't just read examples; type them out and experiment.

5. Build projects — Apply concepts in real applications to solidify your understanding.

Interview Reality

Backend interviews often focus on system design, scalability, and real-world problem-
solving. Be ready to discuss trade-offs, explain your architectural decisions, and walk
through debugging scenarios.

What's Covered

Chapter Topics Questions
1. Node,js Fundamentals Event Loop, Streams, Modules, V8 29
2. TypeScript Types, Generics, Decorators, Config 22
3. Express.js & REST APIs Routing, Middleware, Auth, OpenAPI 26
4. SQL & PostgreSQL Queries, Indexing, Transactions, CTEs 25
5. MongoDB Documents, Aggregation, Indexes 20
6. Redis Caching, Data Structures, Pub/Sub 18
7. Docker Containers, Compose, Networks, Security 22
8. Testing Unit, Integration, E2E, Mocking 20
9. Security OWASP, Auth, Encryption, Headers 20
10. DevOps & Git Cl/CD, Deployment, Git Workflows 20

Good luck with your interview!

CONTENTS

Node.js Fundamentals

Node.js revolutionized server-side development by bringing JavaScript to the backend. Built on
Chrome’'s V8 engine and designed around an event-driven, non-blocking I/0 model, Node js ex-
cels at handling concurrent connections and building scalable network applications. This chapter
explores the core concepts that every Node.js developer must understand.

1.1 Node.js Core Concepts

Q1.1: What is Node.js and how does it differ from traditional web servers? [Junior]

Node,js is a JavaScript runtime built on Chrome’s V8 engine that allows you to run JavaScript
code outside of a web browser. Unlike traditional web servers like Apache or Nginx that create
a new thread for each incoming request, Node.js uses a single-threaded event loop with

non-blocking 1/0O operations.

Traditional servers follow a thread-per-request model: each connection spawns a new thread,
consuming memory and CPU resources. With thousands of concurrent connections, this be-
comes a bottleneck. Node.js handles all requests in a single thread, delegating I/O operations
to the system kernel and processing them asynchronously when complete. This makes Node.js
exceptionally efficient for I/O-heavy workloads like APIs, real-time applications, and microser-

vices.

// A simple Node.js HTTP server
const http = require('http');

const server = http.createServer((req, res) => {
// This callback runs for every request
// But it doesn't block other requests
res.writeHead (200, { 'Content-Type': 'text/plain' });
res.end('Hello from Node.js!');

Hs

server.listen(3000, () => {

2 CHAPTER 1. NODE.JS FUNDAMENTALS

console.log('Server running on port 3000');

1)

Pro Tip

Nodejs is not ideal for CPU-intensive tasks like image processing or complex calculations,
as these block the single thread. For such workloads, use Worker Threads or offload to
separate services.

Q1.2: Describe the role of the single-threaded event loop in Node.js. [Junior]

The event loop is the heart of Node.js, responsible for executing code, collecting and pro-
cessing events, and executing queued callbacks. Despite being single-threaded for JavaScript
execution, Node.js achieves high concurrency through its event-driven architecture.

When Node js starts, it initializes the event loop, processes the input script (which may include
async API calls, timers, or process.nextTick()), and then begins processing the event loop. The
loop continuously checks for pending callbacks, I/O operations, and timers, executing them
when ready. This design allows thousands of concurrent operations without the overhead of
thread management.

// The event Loop in action
console.log('1l. Script start');

setTimeout(() => {
console.log('2. setTimeout callback');

}, 0);

Promise.resolve().then(() => {
console.log('3. Promise callback');

1
console.log('4. Script end');

// Output:

// 1. Script start

// 4. Script end

// 3. Promise callback (microtask)
// 2. setTimeout callback (macrotask)

Q1.3: How does Node.js handle 1/0 operations differently from multi-threaded
servers? [Mid]

Node.js uses non-blocking, asynchronous 1/O operations. When you perform an 1/O opera-
tion (reading a file, querying a database, making an HTTP request), Node.js doesn’t wait for it
to complete. Instead, it registers a callback and continues executing other code. When the 1/0
operation finishes, the callback is added to the event queue and executed.

1.1. NODE.JS CORE CONCEPTS 3

This is fundamentally different from multi-threaded servers where each 1/0 operation blocks
its thread until completion. In Node s, a single thread can initiate thousands of 1/O operations
simultaneously, with the operating system'’s kernel handling the actual work through mecha-
nisms like epoll (Linux), kqueue (macQOS), or 10cp (Windows).

const fs = require('fs');

// Non-blocking (asynchronous) - Node.js way
fs.readFile('large-file.txt', (err, data) => {
if (err) throw err;
console.log('File read complete');

1)

console.log('This runs immediately, not waiting for file');

// Blocking (synchronous) - avoid in production
const data = fs.readFileSync('large-file.txt");
console.log('This waits until file is read');

Common Mistake

Never use synchronous I/O methods (like readFilesync) in production server code. They

block the entire event loop, preventing Node.js from handling other requests until the
operation completes.

Q1.4: What is the difference between the V8 engine and Node.js? [Junior]

V8 is Google's open-source JavaScript engine written in C++. It compiles JavaScript directly to

native machine code for fast execution. V8 is used in Chrome browser and provides the core
JavaScript execution capabilities.

Node.js is a runtime environment that wraps V8 and extends it with additional APIs for server-
side programming. Node.js adds capabilities that don't exist in browser JavaScript: file system
access, network operations, process management, and more. It also includes 1ibuv for the
event loop and asynchronous I/O, plus a standard library of modules.

// V8 provides core JavaScript
const arr = [1, 2, 3].map(x => x * 2);
const obj = { ...defaults, ...overrides };

// Node.js adds server-side APIs

const fs = require('fs'); // File system
const http = require('http'); // HTTP server
const path = require('path'); // Path utilities
const crypto = require('crypto'); // Cryptography

// Node.js globals not in browsers
console.log(process.env.NODE_ENV);
console.log(__dirname);
console.log(__filename);

4 CHAPTER 1. NODE.JS FUNDAMENTALS

Q1.5: What is libuv and what role does it play in Node.js? [Mid]

libuv is a multi-platform C library that provides Node.js with its event loop and asynchronous
I/O capabilities. It abstracts operating system differences and provides a consistent API for
non-blocking operations across Windows, Linux, and macOS.

libuv handles file system operations, DNS resolution, network operations, child processes, and
thread pool management. When Node.js needs to perform an async operation that the OS
kernel can't handle asynchronously (like file system operations on some platforms), libuv uses
a thread pool (default 4 threads) to perform the work without blocking the main thread.

// Libuv thread pool handles these operations

// File system operations use the thread pool
const fs = require('fs');
fs.readFile('file.txt"', callback); // Thread pool

// DNS Lookups use the thread pool
const dns = require('dns');
dns.lookup('example.com', callback); // Thread pool

// Crypto operations use the thread pool
const crypto = require('crypto');
crypto.pbkdf2('password', 'salt', 100000, 64, 'sha512', callback);

// Network I/O uses 0OS kernel (epoll/kqueue/IOCP)
const http = require('http');
http.get('http://example.com', callback); // Kernel async

Pro Tip

You can increase the thread pool size by setting the uv_THREADPOOL_SIZE environment vari-
able (max 1024). This can help if your application performs many concurrent file system
or crypto operations.

Node.js Architecture

Your JavaScript Code
v
Node.js APIs (fs, http, crypto, path, stream, etc.)
17
Node.js Bindings (C++ bridge between JS and C)

e ~
V8 Engine libuv

JavaScript execution Event loop

Async |/O, Thread pool

~ e

‘ Operating System (epoll, kqueue, IOCP) ‘

JIT compilation

1.2. EVENT LOOP AND ASYNCHRONOUS PROGRAMMING 5

Q1.6: What is the global object in Node.js? [Junior]

In Node,js, the global object is the top-level object that holds global variables and functions,
similar to window in browsers. However, variables declared with var, let, or const at the top level
of a module are not added to global—they're scoped to that module.

Node.js also provides several global-like objects that are available in every module without
requiring imports: process, console, Buffer, _ dirname, _ filename, require(), module, and exports.
Note that __dirname and __filename are module-scoped, not truly global.

// Accessing the global object
console.log(global === globalThis); // true in Node.js

// These are available globally
console.log(process.version); // Node.js version
console.log(process.platform); // 'linux', 'darwin', 'win32'

// Module-scoped "globals" (not on global object)
console.log(__dirname); // Directory of current file
console.log(__filename); // Full path of current file
// Variables don't become global automatically

var myVar = 'test';

console.log(global.myvVar); // undefined

// Explicitly add to global (not recommended)
global.myGlobalVar = 'available everywhere';

Common Mistake

Avoid adding properties to the global object. It creates implicit dependencies, makes test-
ing harder, and can lead to naming collisions. Use modules and explicit imports instead.

1.2 Event Loop and Asynchronous Programming
Q1.7: Explain the phases of the Node.js event loop. [Mid]

The Node.js event loop has six main phases, each with a FIFO queue of callbacks to execute:
1. Timers: Executes callbacks scheduled by setTimeout() and setInterval().

2. Pending callbacks: Executes I/0O callbacks deferred from the previous loop iteration (like
TCP errors).

3. Idle, prepare: Internal use only by Node,js.

4. Poll: Retrieves new I/O events and executes I/O-related callbacks. This is where Node.js
spends most of its time.

5. Check: Executes setImmediate() callbacks.

6 CHAPTER 1. NODE.JS FUNDAMENTALS

6. Close callbacks: Executes close event callbacks (like socket.on('close")).

Between each phase, Node.js processes the microtask queue (Promises, process.nextTick()).

Timers
/ setTimeout, setinterval

‘ |dle/Prepare ‘ ‘ Pending ‘

internal 1/O callbacks

Microtasks

process.nextTick
Promises

‘ Close ‘ ‘ Poll ‘

socket.on('close’) 1/O events

\{ Check }‘/
setimmediate

// Demonstrating event Loop phases
const fs = require('fs');

setTimeout(() => console.log('l. Timer'), 0);
setImmediate(() => console.log('2. Immediate'));

fs.readFile(__filename, () => {
// Inside I/O callback, setImmediate always runs first
setTimeout(() => console.log('3. Timer in I/0'), 0);
setImmediate(() => console.log('4. Immediate in I/0"));

s

process.nextTick(() => console.log('5. nextTick'));
Promise.resolve().then(() => console.log('6. Promise'));

console.log('7. Sync');

// Ooutput: 7, 5, 6, 1 or 2 (order varies), 2 or 1, 4, 3

Q1.8: What is the difference between process.nextTick() and setimmediate()?
[Mid]

process.nextTick() and setImmediate() both schedule callbacks, but execute at different times
in the event loop.

process.nextTick() fires immediately after the current operation, before the event loop con-
tinues. It's processed after each phase of the event loop, in the microtask queue. This makes
it higher priority than any I/O or timer callbacks.

setImmediate() executes in the Check phase of the event loop, after the Poll phase completes.
Inside an 1/0 callback, setImmediate() always executes before setTimeout(...,).

1.2. EVENT LOOP AND ASYNCHRONOUS PROGRAMMING 7

// nextTick vs setImmediate

setImmediate(() => console.log('setImmediate'));
process.nextTick(() => console.log('nextTick"'));
console.log('sync');

// Output: sync, nextTick, setImmediate

// Recursive nextTick can starve the event Loop!
function badRecursion() {
process.nextTick(badRecursion); // Never Llets I/O happen

}

// setImmediate allows I/O between iterations
function goodRecursion() {
setImmediate(goodRecursion); // I/0 can happen

}

Common Mistake

Excessive use of process.nextTick() can starve the event loop, preventing 1/O callbacks
from executing. Prefer setImmediate() for recursive operations to allow the event loop to
process other events.

Q1.9: What is callback hell and how do you avoid it? [Junior]

Callback hell (also called the "pyramid of doom”) occurs when multiple asynchronous opera-
tions are nested inside each other, creating deeply indented, hard-to-read code. Each async
operation requires a callback, and when operations depend on previous results, callbacks get
nested deeper and deeper.

Solutions include: 1) Named functions instead of anonymous callbacks, 2) Promises with
.then() chains, 3) async/await syntax for linear-looking async code, 4) Control flow libraries
like async.js, and 5) Breaking code into smaller, modular functions.

// Callback hell - hard to read and maintain
fs.readFile('filel.txt', (err, datal) => {
if (err) return handleError(err);
fs.readFile('file2.txt', (err, data2) => {
if (err) return handleError(err);
db.query(datal + data2, (err, result) => {
if (err) return handleError(err);
// More nesting...
3
1
1

// Solution: async/await
async function processFiles() {
try {

8 CHAPTER 1. NODE.JS FUNDAMENTALS

const datal = await fs.promises.readFile('filel.txt");
const data2 = await fs.promises.readFile('file2.txt');
const result = await db.query(datal + data2);
return result;

} catch (err) {
handleError(err);

Q1.10: What are Promises and how do they improve async code? [Junior]

A Promise is an object representing the eventual completion or failure of an asynchronous op-
eration. It can be in one of three states: pending (initial state), fulfilled (operation completed
successfully), or rejected (operation failed).

Promises improve code by enabling chaining with .then() and .catch(), avoiding nested call-
backs. They provide better error handling (errors propagate through the chain), and enable
Promise.all() for parallel operations and promise.race() for competitive execution. Promises
are also the foundation for async/await syntax.

// Creating a Promise
function fetchUser(id) {
return new Promise((resolve, reject) => {
db.query (" SELECT * FROM users WHERE id = ${id}" , (err, user) => {
if (err) reject(err);
else resolve(user);
1
1

// Chaining promises

fetchUser(1)
.then(user => fetchOrders(user.id))
.then(orders => processOrders(orders))
.catch(err => console.error('Error:', err));

// Parallel execution
Promise.all([
fetchUser(1),
fetchUser(2),
fetchUser(3)
1) .then(users => console.log('All users:', users));

// First to complete wins
Promise.race([
fetchFromCache(key),
fetchFromDatabase(key)
1) .then(result => console.log('Fastest result:', result));

Promise States

1.2. EVENT LOOP AND ASYNCHRONOUS PROGRAMMING 9

then(onFulfilled)
resolve(value)

reject(erron) Rej ected .catch(onRejected)

new Promige

0
Pending

Q1.11: How does async/await simplify asynchronous code? [Junior]

async/await is syntactic sugar over Promises that makes asynchronous code look and behave
like synchronous code. An async function always returns a Promise, and the await keyword
pauses execution until the Promise resolves, returning its value.

This syntax eliminates .then() chains and allows using standard control flow statements (if,
for, try/catch) with async operations. Error handling becomes intuitive with try/catch blocks
instead of .catch() callbacks. The code reads top-to-bottom, making it easier to understand
and debug.

// async function declaration
async function getUserWithOrders(userId) {
try {
const user = await fetchUser(userld);
const orders = await fetchOrders(user.id);

// Can use regular Loops with await
for (const order of orders) {
order.details = await fetchOrderDetails(order.id);

return { user, orders };

} catch (error) {
console.error('Failed to fetch data:', error);
throw error;

}

// Parallel await with Promise.all

async function fetchAllUsers(ids) {
const promises = ids.map(id => fetchUser(id));
const users = await Promise.all(promises);
return users;

// Arrow function with async
const getUser = async (id) => {
return await fetchUser(id);

+;

Pro Tip
Avoid sequential await when operations can run in parallel. Instead of awaiting each op-

10 CHAPTER 1. NODE.JS FUNDAMENTALS

eration one by one, use Promise.all() to run them concurrently and await the combined
result.

Async Patterns Comparison

Callbacks Promises Async/Await
async function() {
getData(cbl) getData() const data = await
cbl: err, data .then(getUser) .
getUser(cb2) then(save) getbata();
: t 5 it
cb2: err, user - .catch(handleErr) - const user aw?1
getUser(data);
S await save(user);
cb3: done // Chained }
Nested, hard to read Flat, chainable Sync-like, readable

Q1.12: What is the difference between parallel and sequential execution of async
operations? [Mid]

Sequential execution runs async operations one after another, waiting for each to complete
before starting the next. Total time equals the sum of all operation times. Use this when
operations depend on previous results.

Parallel execution starts all operations simultaneously and waits for all to complete. Total
time equals the longest operation. Use this when operations are independent. In Node.js, use
Promise.all() for parallel execution with async/await.

// Sequential - takes 3 seconds total
async function sequential() {
const a = await fetchA(); // 1 second
const b = await fetchB(); // 1 second
const c = await fetchC(); // 1 second
return [a, b, c];

// Parallel - takes 1 second total
async function parallel() {
const [a, b, c] = await Promise.all([
fetchA(), // 1 second
fetchB(), // 1 second
fetchC() // 1 second
1)

return [a, b, c];

// Sequential needed when operations depend on each other
async function dependent() {
const user = await fetchUser(1);
const orders = await fetchOrders(user.id); // Needs user.id
return { user, orders };

1.3. MODULES AND PACKAGE MANAGEMENT 11

Common Mistake

With promise.all(), if any promise rejects, the entire operation fails immediately. Use
Promise.allSettled() if you want to wait for all promises regardless of success or failure.

1.3 Modules and Package Management
Q1.13: What are the key differences between CommonJS and ES Modules? [Mid]

CommonlJS (CJS) is Node,js's original module system using require() and module.exports. It
loads modules synchronously and at runtime, meaning you can use dynamic paths and con-
ditional imports.

ES Modules (ESM) use import and export syntax. They are loaded asynchronously and stat-
ically analyzed at parse time, enabling tree-shaking and better optimization. ESM is the
JavaScript standard and works in both browsers and Node.js. ESM imports are hoisted and
must be at the top level (no dynamic imports in regular syntax, though import () function exists
for dynamic loading).

// CommonJS (file.cjs or default in Node.js)
const fs = require('fs');
const { readFile } = require('fs');

// Dynamic require (works)
const moduleName = condition ? 'moduleA' : 'moduleB';
const mod = require(moduleName);

module.exports = { myFunction };
module.exports.namedExport = value;

// ES Modules (file.mjs or "type": "module" in package.json)
import fs from 'fs';

import { readFile } from 'fs';

import * as fsAll from 'fs';

// Dynamic import (async)
const mod = await import('./module.js');

export const myFunction = () => {};
export default myClass;

Pro Tip

To use ES Modules in Node,js, either name your files with .mjs extension or add "type":
"module” to your package.json. Modern Node.js projects increasingly prefer ESM for better
compatibility with frontend code and tooling.

12 CHAPTER 1. NODE.JS FUNDAMENTALS

Q1.14: What is npm and why is it vital for Node.js development? [Junior]

npm (Node Package Manager) is the default package manager for Node.js and the world's
largest software registry. It serves three purposes: 1) A command-line tool for installing, up-
dating, and managing project dependencies, 2) An online registry hosting over 2 million open-
source packages, and 3) A website for discovering and documenting packages.

npm handles dependency resolution, version management, and script running. It installs pack-
ages locally in node_modules or globally for CLI tools. The package. json file defines your project’s
dependencies, scripts, and metadata, making projects reproducible across different machines.

Initialize a new project
npm init -y

Install dependencies

npm install express # Production dependency
npm install jest --save-dev Development dependency
npm install -g typescript Global 1installation

H R

Other common commands

npm update # Update packages

npm outdated # Check for outdated packages
npm audit # Security vulnerability scan
npm run test # Run scripts from package.json
npm ci # Clean 1install from Llock file

Q1.15: What is the purpose of the package.json file? [Junior]

package.json is the manifest file for Nodejs projects. It contains project metadata (name,
version, description), lists all dependencies with their version constraints, defines npm scripts
for common tasks, and specifies the project’s entry point.

This file makes projects reproducible—anyone can clone the repository, run npm install, and
get the same dependencies. It also enables npm to resolve dependency trees, run scripts, and
publish packages to the registry.

{

"name": "my-api",

"version": "1.0.0",

"description": "A REST API built with Express",

"main": "src/index.js",

"type": "module",

"scripts": {
"start": "node src/index.js",
"dev": "nodemon src/index.js",
"test": "jest",
"lint": "eslint src/"

s

"dependencies": {
"express": "24.18.2",

1.3. MODULES AND PACKAGE MANAGEMENT 13

"pg": "A8.11.8"
3
"devDependencies": {
"jest": "729.5.0",
"nodemon": "~3.0.1"
3
"engines": {
"node": ">=18.0.0"

Q1.16: What is the difference between dependencies and devDependencies? [Ju-
nior]

dependencies are packages required for your application to run in production. They include
frameworks (Express), database drivers (pg, mongoose), and utility libraries your code directly
uses.

devDependencies are packages only needed during development and testing. They include
testing frameworks (Jest), linters (ESLint), build tools (TypeScript, webpack), and development
servers (nodemon). When deploying to production with npm install --production Or npm ci
--omit=dev, devDependencies are not installed, reducing the production bundle size.

Install as production dependency
npm install express mongoose

Install as dev dependency
npm install --save-dev jest eslint typescript

Production install (omits devDependencies)
npm install --production

npm ci --omit=dev

// package.json

{

"dependencies": {
"express": "74.18.2", // Needed 1in production
"mongoose": "~7.0.0"

¥

"devDependencies": {
"jest": "729.5.0", // Only for testing
"eslint": "~8.40.0", // Only for development
"typescript": "~5.0.0" // Only for building

}

14 CHAPTER 1. NODE.JS FUNDAMENTALS

Q1.17: What is package-lock.json and why is it important? [Junior]

package-lock.json is an automatically generated file that locks the exact versions of all installed
packages and their dependencies. While package.json specifies version ranges (like ~4.18.0), the
lock file records the precise version installed (like 4.18.2).

This ensures reproducible builds—every developer and CI/CD pipeline gets identical depen-
dencies. Without it, two npm install commands at different times could install different ver-
sions, potentially causing "works on my machine” bugs. Always commit package-lock.json to
version control.

// package.json - version range
"express": "74.18.0" // Could install 4.18.0, 4.18.2, 4.19.0...

// package-Llock.json - exact version
"express": {

"version": "4.18.2",
"resolved": "https://registry.npmjs.org/express/-/...",
"integrity": "sha512-...",
"dependencies": {
"accepts": "~1.3.8",
}

Use npm ci for clean installs from Lock file
npm ci # Deletes node_modules, installs exact versions

npm install updates lock file if needed
npm install # May update Lock file with newer versions

Pro Tip

Use npm ci instead of npm install in CI/CD pipelines. It's faster, more reliable, and ensures
the exact versions from package-1lock.json are installed without any modifications.

Q1.18: What are peer dependencies and when would you use them? [Mid]

Peer dependencies specify packages that your package is compatible with but doesn't directly
depend on. They're used primarily by libraries and plugins that extend another package. In-
stead of bundling the host package, a peer dependency says "l work with version X of this
package, and the consuming project must provide it.”

For example, a React component library declares react as a peer dependency because it needs
React to work but shouldn’t bundle its own copy. This prevents version conflicts and duplicate
packages. If the consuming project has an incompatible version, npm warns during installation.

// A React component Library's package.json

{

1.3. MODULES AND PACKAGE MANAGEMENT 15

"name": "my-react-components",
"peerDependencies™: {
"react": "~17.0.0 || ~18.0.0",
"react-dom": "~17.0.0 || ~18.0.0"
¥
"devDependencies": {
// For development, install peer deps as dev deps
"react": "718.2.0",
"react-dom": "~18.2.0"

// A Jest plugin's package.json
{
"name": "jest-custom-reporter"”,
"peerDependencies": {
"jest": ">=28.0.0"

Q1.19: What is npm audit and how do you fix security vulnerabilities? [Junior]

npm audit scans your project’s dependency tree for known security vulnerabilities by checking
against the npm security advisory database. It reports vulnerabilities with severity levels (low,
moderate, high, critical) and provides remediation advice.

To fix vulnerabilities: 1) Run npm audit fix for automatic fixes that don't break semver, 2) Use
npm audit fix --force for breaking changes (review carefully), 3) Manually update specific pack-
ages, or 4) Use overrides in package.json to force specific versions of transitive dependencies.

Run security audit
npm audit

Output shows vulnerabilities
High: prototype-pollution in lodash < 4.17.21
Moderate: regex-dos in some-package

Automatic fix (safe)
npm audit fix

Force fix (may break things)
npm audit fix --force

Override transitive dependency in package.json

{

"overrides": {
"lodash": "~4.17.21"

16 CHAPTER 1. NODE.JS FUNDAMENTALS

Generate JSON report for CI
npm audit --json > audit-report.json

Common Mistake

npm audit fix --force can install major version updates that break your application. Al-
ways review the changes and run your test suite after fixing vulnerabilities.

1.4 Built-in Modules
Q1.20: What are the most important built-in modules in Node.js? [Junior]

Node,js includes many built-in modules that don't require installation:
fs - File system operations (read, write, watch files)
path - File path manipulation (join, resolve, parse paths)
http/https - HTTP server and client functionality
crypto - Cryptographic operations (hashing, encryption)
stream - Abstract interface for streaming data
os - Operating system information
events - Event emitter pattern implementation
util - Utility functions (promisify, format, inspect)
buffer - Binary data handling
child_process - Spawn child processes

const fs = require('fs');

const path = require('path');

const crypto = require('crypto');

const os = require('os');

// Path manipulation
const fullPath = path.join(__dirname, 'data', 'file.json');

// File operations
const data = fs.readFileSync(fullPath, 'utf8');

// Hashing
const hash = crypto.createHash('sha256")
.update(data)

.digest('hex");

1.4. BUILT-IN MODULES 17

// System info

console.log(os.platform()); // 'linux’', 'darwin’, ‘win32’
console.log(os.cpus().length); // Number of CPU cores
console.log(os.freemem()); // Free memory in bytes

Q1.21: How do you read and write files synchronously vs asynchronously? [Junior]

Node.js fs module provides three APIs: synchronous (blocking), callback-based (async), and
promise-based (async). Synchronous methods have sync suffix and block the event loop until
complete. Callback methods take an error-first callback. Promise methods are in fs.promises
namespace and work with async/await.

Use synchronous methods only at startup or in CLI tools. For servers, always use asynchronous
methods to avoid blocking other requests.

const fs = require('fs');
const fsPromises = require('fs/promises');

// Synchronous - blocks event Loop
const data = fs.readFileSync('file.txt', 'utf8');
fs.writeFileSync('output.txt', data);

// Callback-based async
fs.readFile('file.txt', 'utf8', (err, data) => {
if (err) throw err;
fs.writeFile('output.txt', data, (err) => {
if (err) throw err;
console.log('Done!");
1
1)

// Promise-based async (recommended)

async function copyFile() {
const data = await fsPromises.readFile('file.txt', 'utf8');
await fsPromises.writeFile('output.txt', data);
console.log('Done!");

}

Q1.22: What are streams in Node.js and what types exist? [Mid]

Streams are abstract interfaces for handling data that comes in chunks over time, rather than
loading everything into memory at once. They're essential for processing large files, network
data, or any data too big to fit in memory.

Four types of streams exist: Readable (source of data, e.g., fs.createReadstream), Writable
(destination for data, e.g., fs.createnWritestream), Duplex (both readable and writable, e.g., TCP
sockets), and Transform (duplex that modifies data passing through, e.g., z1ib.createGzip).

18 CHAPTER 1. NODE.JS FUNDAMENTALS

const fs = require('fs');
const zlib = require('zlib');

// Readable stream
const readable = fs.createReadStream('large-file.txt');

// Writable stream
const writable = fs.createWriteStream('output.txt');

// Transform stream (gzip compression)
const gzip = z1lib.createGzip();

// Pipe: read -> compress -> write
readable
-pipe(gzip)
.pipe(writable)
.on('finish', () => console.log('Compression complete'));

// Reading stream data manually
readable.on('data’, (chunk) => {
console.log(Received ${chunk.length} bytes®);
1)
readable.on('end', () => console.log('Done reading'));
readable.on('error', (err) => console.error(err));

Pro Tip

Use the pipeline() function from stream module instead of chaining .pipe() calls. It prop-
erly handles errors and cleanup, preventing memory leaks when streams fail.

Stream Pipeline

.pipe() -pipe()

Readable Transform Writable

chunks chunks
fs.createReadStream zlib.createGzip fs.createWriteStream

http.IncomingMessage crypto.createCipher http.ServerResponse

Duplex = Readable + Writable (e.g., TCP socket)

Q1.23: What is the Buffer class and when would you use it? [Mid]

Buffer is a class for handling raw binary data directly in memory, outside the V8 heap. Since
JavaScript strings are Unicode and can't represent arbitrary binary data efficiently, Buffers pro-
vide a way to work with binary data from files, network packets, or encryption operations.

Use Buffers when working with: file 1/O (especially binary files), network protocols, crypto-
graphic operations, image/audio processing, or converting between encodings. Buffers have
a fixed size determined at creation and can be sliced, copied, and concatenated.

1.4. BUILT-IN MODULES 19

// Creating buffers

const bufl = Buffer.alloc(10); // 10 zero bytes
const buf2 = Buffer.from('Hello"); // From string
const buf3 = Buffer.from([72, 105]); // From array

// Reading and writing
bufl.write('Hi");
console.log(bufl.toString()); // 'Hi'

// Encoding conversions
const base64 = Buffer.from('Hello').toString('base64');
console.log(base64); // 'SGVsbG8='

const original = Buffer.from(base64, 'base64').toString('utf8');
console.log(original); // 'Hello’

// Working with binary files

const fs = require('fs');

const imageBuffer = fs.readFileSync('image.png');
console.log(imageBuffer.length); // File size in bytes

Q1.24: How do you handle environment variables in Node.js? [Junior]

Environment variables are accessed through the process.env object, which contains all environ-
ment variables as string key-value pairs. They're commonly used for configuration that varies
between environments (development, staging, production) like database URLs, API keys, and
feature flags.

For local development, use a .env file with the dotenv package to load variables. Never commit
.env files with secrets to version control—use .env.example to document required variables
without actual values.

// Access environment variables

const port = process.env.PORT || 3000;
const dbUrl = process.env.DATABASE_URL;
const nodeEnv = process.env.NODE_ENV;

// Using dotenv package
require('dotenv').config();

// .env file

// PORT=3000

// DATABASE URL=postgres://Localhost/mydb
// API_KEY=secretl23

// Type-safe config pattern
const config = {
port: parseInt(process.env.PORT, 10) || 300,
db: {
url: process.env.DATABASE_URL,

20 CHAPTER 1. NODE.JS FUNDAMENTALS

pool: parselInt(process.env.DB_POOL_SIZE, 10) || 1@
3

isDev: process.env.NODE_ENV === 'development'

s

// Validate required variables
if (!process.env.DATABASE_URL) {

throw new Error('DATABASE_URL is required');
}

Common Mistake

All environment variables are strings. Always parse numeric values with parseInt() or
parseFloat(), and compare boolean values as strings (process.env.DEBUG === 'true').

1.5 Error Handling
Q1.25: How do you handle errors in synchronous vs asynchronous code? [Junior]

Synchronous errors are caught with standard try/catch blocks. The error propagates up the
call stack until caught or crashes the application.

Asynchronous errors require different approaches: callbacks use the error-first pattern (error
as first argument), Promises use .catch() or try/catch with async/await, and EventEmitters emit

‘error' events. Unhandled async errors can crash the process or be silently ignored, so proper
error handling is critical.

// Synchronous error handling
try {
const data = JSON.parse(invalidJlson);
} catch (error) {
console.error('Parse failed:', error.message);

}

// Callback error handling (error-first pattern)
fs.readFile('file.txt"', (err, data) => {
if (err) {
console.error('Read failed:', err);
return;
}
console.log(data);

1K

// Promise error handling
fetchData()
.then(data => process(data))
.catch(err => console.error('Failed:', err));

1.5. ERROR HANDLING 21

// async/await error handling
async function main() {
try {
const data = await fetchData();
return process(data);
} catch (error) {
console.error('Failed:"', error);

}

Q1.26: What is the difference between operational errors and programmer errors?
[Mid]

Operational errors are runtime problems that occur in correctly written programs: network
failures, file not found, invalid user input, database timeouts. These are expected failure modes

that your code should handle gracefully—retry, return an error response, or fail the specific
operation.

Programmer errors are bugs in your code: typos, undefined variables, wrong function argu-
ments, logic errors. These indicate your code is broken and usually shouldn't be caught—Iet

the process crash and fix the bug. Trying to "handle” programmer errors often masks the real
problem.

// Operational errors - handle gracefully
async function getUser(id) {

try {
const user = await db.findUser(id);
if (luser) {

// User not found - operational, expected
throw new NotFoundError(User ${id} not found);

}

return user;
} catch (error) {
if (error.code === 'ECONNREFUSED"') {
// Database down - operational, retry or fail gracefully
throw new ServiceUnavailableError('Database unavailable');

}

throw error;

}

// Programmer errors - Llet them crash

function calculateTotal(items) {
// If items is undefined, that's a bug - don't catch it
return items.reduce((sum, item) => sum + item.price, 0);

}

22 CHAPTER 1. NODE.JS FUNDAMENTALS

Pro Tip

Use different error classes for operational vs programmer errors. Operational errors might
extend a base AppError class with status codes, while programmer errors should crash the
process so you can identify and fix them.

Q1.27: How do you handle uncaught exceptions and unhandled promise rejec-
tions? [Mid]

Nodejs provides global handlers for catching errors that escape your code:
process.on('uncaughtException') for synchronous errors and process.on('unhandledRejection")

for Promise rejections without .catch().

These should be used for logging and graceful shutdown, not for continuing execution. After
an uncaught exception, the application state may be corrupted, so the safest approach is to
log the error, close connections gracefully, and exit the process. Let a process manager (PM2,
systemd, Kubernetes) restart it.

// Handle uncaught synchronous exceptions
process.on('uncaughtException', (error) => {
console.error('Uncaught Exception:', error);
// Log to external service
logger.fatal(error);
// Graceful shutdown
server.close(() => {
process.exit(1);
1
1)

// Handle unhandled promise rejections
process.on('unhandledRejection', (reason, promise) => {
console.error('Unhandled Rejection:', reason);
// In Node.js 15+, this crashes by default
// Log and exit to be safe
logger.fatal({ reason, promise });
process.exit(1);

)8

// Graceful shutdown on signals
process.on('SIGTERM', () => {
console.log('SIGTERM received, shutting down...");
server.close(() => {
db.close().then(() => process.exit(0));
1
})s

Common Mistake

Never use uncaughtException to resume normal operation. The Node.js documentation
explicitly warns against this—the application may be in an undefined state.

1.5. ERROR HANDLING 23

Q1.28: What is the error-first callback pattern? [Junior]

The error-first callback (also called “Node-style callback”) is a convention where callback func-
tions receive an error object as the first argument. If the operation succeeded, the error is null
or undefined, and subsequent arguments contain the results. If it failed, the error argument
contains the Error object.

This pattern ensures consistent error handling across all async operations in Node.js. Most built-
in modules and npm packages follow this convention, making it predictable how to handle
success and failure cases.

// Error-first callback pattern
fs.readFile('file.txt', (err, data) => {
if (err) {
// Handle error - first argument
console.error('Failed to read:', err.message);
return;
}
// Success - use data (second argument)
console.log(data);

)8

// Creating functions that follow the pattern
function fetchUser(id, callback) {
db.query (" SELECT * FROM users WHERE id = ${id} , (err, rows) => {

if (err) {
return callback(err, null); // Error first
}
if (rows.length === 0) {
return callback(new Error('User not found'), null);
}
callback(null, rows[@]); // null error = success
1)

// Convert callback to Promise with util.promisify
const util = require('util');

const readFile = util.promisify(fs.readFile);
const data = await readFile('file.txt');

Q1.29: How do you create custom error classes in Node.js? [Mid]

Custom error classes extend the built-in Error class and add application-specific properties
like HTTP status codes, error codes, or additional context. They help distinguish different error
types, enable specific error handling, and provide better debugging information.

Create a base Apperror class for operational errors, then extend it for specific cases like
NotFoundError, ValidationError, Or UnauthorizedError. This patternintegrateS\NeH with Express
error handling middleware.

24

CHAPTER 1.

// Base application error
class AppError extends Error {
constructor(message, statusCode, code) {
super(message);
this.statusCode = statusCode;
this.code = code;
this.isOperational = true;
Error.captureStackTrace(this, this.constructor);

// Specific error types
class NotFoundError extends AppError {
constructor(resource) {
super (" ${resource} not found , 404, 'NOT_FOUND');

class ValidationError extends AppError {
constructor(message, errors = []) {
super(message, 400, 'VALIDATION_ERROR');
this.errors = errors;

}

// Usage
if (luser) {
throw new NotFoundError('User');

}

// Express error handler can check error type
app.use((err, req, res, next) => {
if (err.isOperational) {
res.status(err.statusCode).json({ error: err.message });
} else {
res.status(500).json({ error: 'Internal server error' });
}
1

Pro Tip

NODE.JS FUNDAMENTALS

Call Error. captureStackTrace(this, this.constructor) in custom errors to exclude the con-
structor call from the stack trace, making debugging easier by pointing directly to where

the error was thrown.

TypeScript for Backend

TypeScript has become the standard for professional Node.js development. It adds static typing
to JavaScript, catching errors at compile time rather than runtime, improving code quality, and

enabling better tooling. This chapter covers TypeScript fundamentals and advanced features
essential for backend development.

2.1 Type System Basics
Q2.1: What is TypeScript and why use it for backend development? [Junior]

TypeScript is a statically typed superset of JavaScript that compiles to plain JavaScript. It adds

optional type annotations, interfaces, generics, and other features that help catch errors during
development rather than at runtime.

For backend development, TypeScript provides: 1) Early error detection through static type
checking, 2) Better IDE support with autocompletion and refactoring, 3) Self-documenting

code through type annotations, 4) Easier maintenance of large codebases, and 5) Safer refac-
toring with compile-time validation.

// JavaScript - errors only found at runtime
function getUser(id) {

return db.query(SELECT * FROM users WHERE id = ${id});
}

getUser('abc'); // No error until runtime

// TypeScript - errors caught at compile time
function getUser(id: number): Promise<User> {
return db.query(SELECT * FROM users WHERE id = ${id});
}
getUser('abc'); // Error: Argument of type 'string'’
// 1s not assignable to parameter of type 'number'

TypeScript Compilation Flow

25

FREE SAMPLE

Thank you for reading this free sample!

This sample includes:
« Complete Table of Contents
* Full chapter structure overview

* Entire first chapter with all questions & answers

The full book contains 200+ interview questions

with detailed answers and code examples.

Get the complete book at:

easyinterview.me

© 2026 EasylInterview.me - All rights reserved

