FRONTEND

DEVELOPER

INTERVIEW GUIDE

e e My by : g - .ty g . = s A~ N L .
= = o PR s - fee = - . . = = N . . .
s e - . o Ay e » - T e c TN fhos] £ . =
CRR RIS ORE. e - - <R LI = ; ;. i
. 3 F ¥ .. y ' b o .
> A o , Coe 3 : . .
.
:
+
.
i

SLAWOMIR PLAMOWSKI

Frontend Developer Interview Guide 2026
Copyright © 2026 EasylInterview.me
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means—electronic, mechanical, photocopying, recording, or otherwise—without prior written
permission.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

The information in this book is distributed on an “as is” basis, without warranty.

First Edition: January 2026

https://easyinterview.me

https://easyinterview.me

Contents

How to Use This Guide

1

HTML & CSS e

1.1

1.2

13

1.4

1.5

1.6

HTMLS5 Fundamentals
Q1.1: What does the "5" in HTMLS5 represent and what are its key evolutionary improve-

Q1.3: What is the purpose of the <!DOCTYPE html> declaration and how does it differ
from previous DOCTYPE declarations?
Q1.4: Why is HTML5 considered more semantic compared to previous HTML standards,
and what are the implications for web accessibility?

SemanticElements L
Q1.5: What are the most commonly used semantic elements in HTML5 and what content
dotheyrepresent?
Q1.6: How do elements like <section>, <article>, and <aside> differ from the traditional
<div> element in terms of semantic meaning?
Q1.7: What is the significance of <header> and <footer> elements and how should they
be properly implemented?
Q1.8: In which scenarios is the <main> element most appropriately used, and what are its
accessibility implications?

Form Enhancements
Q1.9: What new input types were introduced in HTML5 and how do they improve user
EXPEMIENCET . . v it e e e e e e e
Q1.10: What is the purpose of the required attribute and how does it interact with client-
side validation? e
Q1.11: How does HTML5 handle built-in validation messages and how can they be cus-

DataStorage
Q1.12: What are the differences between localStorage and sessionStorage, and how do

they compare to traditional cookies? L.
Q1.13: In what scenarios might IndexedDB be more advantageous than localStorage? .

Accessibility o
Q1.14: How do semantic elements in HTML5 improve web accessibility?
Q1.15: What role do aria-* attributes play and when should they be used?

Advanced HTML
Q1.16: What is the purpose of the draggable attribute in HTML5 and how can you imple-
ment drag-and-drop functionality?

10

11
11
11

12

CONTENTS i

Q1.18: What is the purpose of the <picture> element and how does it help in creating

FESPONSIVE IMAGES? . o v o v o v e e e e e e e e e e e e e e 15
1.7 CSSBasicConcepts i it 16
Q1.19: What is CSSand why isitused? L 16
Q1.20: How do inline, inline-block, and block-level elements differ? 17
Q1.21: Can you explain the differences between margin and padding? 18
Q1.22: What does the CSS box model represent? 19
Q1.23: How do you specify colors in CSS? 19
Q1.24: What is the purpose of the "reset” or "normalize” in CSS? 21
1.8 Selectors and Specificity 22
Q1.25: What are the different types of CSS selectors and when would you use them? . . 22
Q1.26: How does the cascade and specificity work in CSS? 23
Q1.27: What are pseudo-classes and pseudo-elements? Give examples of each. 24
Q1.28: What is the difference between the ">" (child) and " " (descendant) combinators? 26
1.9 Layoutand Positioning 27
Q1.29: What are the different methods of positioning elements (static, relative, absolute,
fixed, sticky)? 27
Q1.30: How does float work and what are common ways to clear floated elements? . . . 28
Q1.31: What is the difference between width: auto and width: 100%? 30
Q1.32: How do you center an element horizontally and vertically using modern approaches? 31
Q1.33: What are the main concepts and properties of Flexbox? 32
Q1.34: How does CSS Grid differ from Flexbox, and in which use cases are they each more
appPropriate? e e 33
1.10 Responsive Design e 35
Q1.35: What are media queries and how are they used to create responsive designs? . . 35
Q1.36: How do you handle responsive typography? 36
Q1.37: What does mobile-first design mean, and why might you choose it? 38
Q1.38: What are some best practices for responsive images in CSS? 38
Q1.39: How do you prevent horizontal scroll on mobile devices? 40
111 Advanced CSS 42
Q1.40: Can you explain how to use :nth-child, :nth-of-type, and related pseudo-classes? 42
Q1.41: What is the difference between : :before and ::after? 43
Q1.42: Can you describe how CSS transforms and transitionswork? 44
Q1.43: How do CSS animations differ from transitions? 46
1.12 CSS Architecture 48
Q1.44: What are CSS preprocessors like SASS or LESS, and what benefits do they offer? . 48
Q1.45: Can you explain BEM (Block Element Modifier) naming convention and why it's
useful? . o L 50
Q1.46: What are CSS Modules in the context of modern frameworks? 51
Q1.47: How do you organize and maintain large-scale CSS code bases? 53
113 CSSPerformance 54
Q1.48: How do you handle CSS performance for large sites or applications? 54
Q1.49: What is the render-blocking effect of CSS and how can it be minimized? 54
Q1.50: What are critical CSS and how do you implementit? 56
114 Modern CSS .« . . L o 56
Q1.51: What are CSS Custom Properties (variables) and how do they differ from prepro-
cessorvariables? 56
Q1.52: How does the calc() function work and whenisituseful? 58

Q1.53: How do you implement dark mode or theme switching using CSS variables? . . . 59

CONTENTS

Q1.54: What are CSS-in-JS solutions and how do they differ from standard CSS? 62

2 JavaScript 65
2.1 Core Concepts . . . o o v i 65
Q2.1: What is the difference between==and===? 65
Q2.2: What is the Difference Between letandvar? 66
Q2.3: What are the Data Types in JavaScript? 67
Q2.4: What are the Falsy Values inJavaScript? 67
Q2.5: What Distinguishes null from undefined? 68
Q2.6: What is the Spread Operator? i i i ittt e 69
Q2.7: What isthe Rest Operator? i i ittt et 70

2.2 Scopeand Closures e e 71
Q2.8: Whatis scope? e e e 71
Q2.9: What types of scope doyou know? 71
Q2.10: How does hoisting work? e 72
Q2.11: Whatisaclosure? e 73
Q2.12: Whatisan lIFE? e e 74
Q2.13: What is the Temporal Dead Zone? 75

2.3 Prototypesand Inheritance. 76
Q2.14: What is prototypal inheritance?, 76
Q2.15: What Is the Prototype Chain? e 77
Q2.16: What Is the Difference Between _ proto__and prototype? 78
Q2.17: What Are ES6 Classes? o it 79

24 Functions 80
Q2.18: How Do the map(), filter(), and reduce() Functions Work? 80
Q2.19: What Is the Difference Between forEach() andmap()? 81
Q2.20: What Are First-Class Functions? 82
Q2.21: What Are Higher-Order Functions? 83
Q2.22: What Is a Pure Function? e 84
Q2.23: Whatis memoization? e 85
Q2.24: Whatis currying? o o e e e e 86
Q2.25: What are arrow functions? e 88
Q2.26: What Distinguishes call() from apply()? v v o v v v v i i et 89
Q2.27: What is the Purpose of the bind() Function? 90

2.5 AsynchronousJavaScript 91
Q2.28: Whatisthe Event LOOP? o v i o e e e e e 91
Q2.29: Whatis @a Promise? o o i v e e e e e e e 92
Q2.30: Whatis a callback? 93
Q2.31: Whatis callback hell? e 94
Q2.32: What are the benefits of usinga Promise? 96
Q2.33: What is async/await? e e e e 97
Q2.34: What states cana Promise be in? 98
Q2.35: What is Promise Chaining? it it e 99
Q2.36: What is the purpose of Promise.all()? v i v v 101
Q2.37: What is the purpose of Promise.race()? v v i i i i i 102

2.6 DOM and Browser APl e 104
Q2.38: Whatis Event Bubbling? 104
Q2.39: What is Event Capturing? e 105
Q2.40: What is Event Delegation? 106

Q2.41: What Is the Purpose of preventDefault()? 107

CONTENTS v

Q2.42: What Is the Purpose of stopPropagation()? 108
Q2.43: What distinguishes cookies, sessionStorage, and localStorage? 109
Q2.44: What Is the Difference Between load and DOMContentLoaded? 110
Q2.45: What is the difference between window and document? 111

2.7 Objectsand Arrays 112
Q2.46: How to Create an Object in JavaScript? 112
Q2.47: How to Clone an Object in JavaScript? 114
Q2.48: What Is JSON and How DoWe Handle It? 115
Q2.49: What is the difference between Object.values and Object.entries? 116
Q2.50: What is the difference between for...inand for...of? 117
Q2.51: How to check if an object has a property? 119
Q2.52: Object.freeze() vs Objectseal() it i 120
Q2.53: What is the Difference Between slice() and splice()? 121

28 Modulesand Tooling 123
Q2.54: What Are the Benefits of Using Modules? 123
Q2.55: What Is Tree Shaking? e 124
Q2.56: What Isa Polyfill? e 125
Q2.57: What is Minification? 127

29 Performance 128
Q2.58: What is the difference between <script async> and <script defer>? 128
Q2.59: What is a Garbage Collector? e 129
Q2.60: What IsaMemory Leak? 130
Q2.61: How to Identify a Memory Leak in an Application 132

2.10 Advanced TOPICS o o o o e 134
Q2.62: Whatis aWeakSet? o i e 134
Q2.63: Whatis aWeakMap? o v v v e e e e 135
Q2.64: Whatis an lterator Used For? 137
Q2.65: What is a Generator Used For? 139
Q2.66: What is a service worker? e 140

2171 SeCurity . . o 142
Q2.67: What Is a Cross-Site Scripting (XSS) Attack? 142
Q2.68: What Is a Cross-Site Request Forgery (CSRF) Attack? 143
Q2.69: What Is CORS? e e e e 145
Q2.70: What Is the Same-Origin Policy? 146

3 TypeScript. e 149
3.1 Typesand Variables 149
Q3.1: Explain the difference between let, const, and var in TypeScript. 149
Q3.2: What are the basic data types in TypeScript? 150
Q3.3: What is type inference in TypeScript? 152

3.2 Interfacesand Classes 153
Q3.4: What is an interface in TypeScript? 153
Q3.5: Whatisaclassin TypeScript? i 154
Q3.6: Explain the difference between an interfaceandaclass 156
Q3.7: How do you implement an interface inaclass? 157
Q3.8: What are access modifiers (public, private, protected) in TypeScript? 159

33 Functions 160
Q3.9: How do you define a function in TypeScript? 160

Q3.10: What are optional parameters and how do you define them? 162

vi

CONTENTS

Q3.11: How do you define a function type in TypeScript? 163
Q3.12: What are generics in TypeScript and how do you use them in functions? 165
34 Advanced Types 167
Q3.13: What are union types and how doyouusethem?. 167
Q3.14: What are intersection types and how do you use them? 169
Q3.15: What are type aliases and how do youusethem? 171
Q3.16: Explain the concept of the "never” type in TypeScript 173
3.5 Type Guards and Assertions 175
Q3.17: What are type guards in TypeScript and when would you use them? 175
Q3.18: What are type assertions in TypeScript and when should you use them? 177
3.6 GeNETICS . . . o 179
Q3.19: Explain how to use generics with interfaces and classes. 179
3.7 Modules and Namespaces i 181
Q3.20: What are modules in TypeScript? o i 181
Q3.21: What are namespaces in TypeScript? 183
Q3.22: Explain the difference between modules and namespaces. 185
Q3.23: How do you import and export modules in TypeScript? 187
3.8 Decorators 190
Q3.24: What are decorators in TypeScript? 190
Q3.25: How do you define adecorator? 192
Q3.26: What are some common use cases for decorators? 195
3.9 Object-Oriented Programming 199
Q3.27: What are the principles of object-oriented programming? 199
Q3.28: What is inheritance in TypeScript? 201
Q3.29: What is polymorphism in TypeScript? L 203
React 207
41 ReactBasics 207
Q4.1: Whatis React? o 207
Q4.2: What are the advantages and disadvantages of React?. 208
Q4.3: What distinguishes React from Angular? 208
42 Virtual DOM . . . 209
Q4.4: What is the Virtual DOM? o o 209
Q4.5: What is the difference between the DOM and the Virtual DOM? 210
43 JSXand Props. 211
Q4.6: What is JSX? . . . o o 211
Q4.7: What are props used for? e 211
Q4.8: What is the difference between state and props? 212
Q4.9: Whatis prop drilling? e 213
Q4.10: How do you enforce typing forprops? 215
44 Components e 216
Q4.11: What is the Difference Between Functional and Class Components? 216
Q4.12: Controlled vs. Uncontrolled Components 217
Q4.13: What are Higher Order Components? 218
Q4.14: What is the Purpose of React.memo()? v v i i v i it e et 219
Q4.15: What Are Error Boundaries? 220
Q4.16: What Lifecycle Methods Do You Know? 222
Q4.17: Presentational vs Container Components 223

Q4.18: What is the Purpose of the StrictMode Component? 224

CONTENTS vii

4.5

4.6

47

4.8

4.9

4.10

4.11

4.12

413

4.14

React APl . . . L e 225
Q4.19: What Is React Context Used For? 225
Q4.20: What Is the Role of KeysinReact? 226
Q4.21: What Is the Purpose of refsinReact? 228
Q4.22: What IsReactDOM? e 229
Events e 230
Q4.23: What is the difference between events in Reactand HTML? 230
Q4.24: What is a SyntheticEvent? e e 231
React Hooks Fundamentals. 232
Q4.25: What are React Hooks and why were they introduced? 232
Q4.26: What are the rulesof Hooks?, 233
Q4.27: Why can't Hooks be called inside loops, conditions, or nested functions? 234
Q4.28: How does React track which Hook belongs to which component? 235
useState Hook 236
Q4.29: How does useState work and what does it return? 236
Q4.30: What is the difference between useState with a value vs a function initializer? . . 237
Q4.31: How do you update state based on the previous state value? 238
useEffect Hook 239
Q4.32: What is useEffect and when doesitrun? 239
Q4.33: What is the cleanup function in useEffect and whenisitcalled? 240
Performance 242
Q4.34: What Would You Do If the Application Renders Too Slowly? 242
Q4.35: Why does useState not merge objects like this.setState in class components? . . 243
Q4.36: How do you handle multiple state variables - one useState or multiple? 244
Q4.37: What happens when you call useState with the samevalue? 245
Q4.38: What is the dependency array in useEffect and how does itwork? 246
Q4.39: What is the difference between useEffect with no dependency array, empty array,

and array withvalues? 247
Q4.40: How do you fetch data with useEffect? 248
Q4.41: What are common mistakes when using useEffect? 250
Q4.42: How do you handle async functions inside useEffect? 251
useContext Hook 252
Q4.43: What is useContext and how does itwork? 252
Q4.44: How do you create and use a Context with useContext? 253
Q4.45: What are the performance implications of useContext? 254
Q4.46: When should you use useContext vs prop drilling vs state management libraries? 256
useRef Hook 257
Q4.47: What is useRef and what are itsuse cases? 257
Q4.48: What is the difference between useRef and useState? 258
Q4.49: How do you access DOM elements with useRef? 259
Q4.50: Why doesn't updating a ref triggerare-render? 261
useMemo and useCallback 263
Q4.51: What is useMemo and when should youuse it? 263
Q4.52: What is useCallback and when should youuseit? 264
Q4.53: What is the difference between useMemo and useCallback? 266
Q4.54: When should you NOT use useMemo or useCallback? 267
Q4.55: What are the common mistakes when using useMemo and useCallback? 269
useReducer Hook 271

Q4.56: What is useReducer and when should you use it over useState? 271

viii CONTENTS

Q4.57: How does useReducer work with actions and reducers? 272
Q4.58: What is the difference between useState and useReducer? 274
Q4.59: How do you combine useReducer with useContext for state management? . .. 276

415 Custom Hooks e 278
Q4.60: What is a custom Hook and why would you createone? 278
Q4.61: What are the naming conventions for custom Hooks? 280
Q4.62: How do you share stateful logic between components using custom Hooks? . . . 281
Q4.63: How do you test custom Hooks? 283

416 Advanced Hooks L 285
Q4.64: What is useLayoutEffect and how does it differ from useEffect? 285
Q4.65: What is uselmperativeHandle and when would you use it? 287
Q4.66: What is useDeferredValue and when would you useit? 289
Q4.67: What is useTransition and how does it help with performance? 291
Q4.68: What is useld and what problem does itsolve? 293

4.17 Hooks Performance 295
Q4.69: How do you optimize performance when using Hooks? 295
Q4.70: What causes infinite loops with Hooks and how do you prevent them? 297
Q4.71: How do you handle stale closures in Hooks? 300
Q4.72: What is the React Hooks ESLint plugin and why is it important? 302

418 React Router 304
Q4.73: What is the purpose of React Router? 304
Q4.74: What is the difference between <BrowserRouter> and <HashRouter>? 305
Q4.75: How can routing be triggered programmatically? 307
Q4.76: How to Handle a Missing Page (404 Status) in React Router? 308
Q4.77: How to Split Code Based onthe URL? 309

419 Redux . . . o 311
Q4.78: Whatis Redux? o e 311
Q4.79: What are the componentsof Redux? 312
Q4.80: What are the benefits of using Redux? 313
Q4.81: What is Redux Thunkused for? 314

420 Performance 316
Q4.82: What Would You Do If the Application Renders Too Slowly? 316

5 Testing 319
5.1 Testing Fundamentals 319
Q5.1: What is software testing and why is it important? 319
Q5.2: What are the different levels of testing (unit, integration, system, acceptance)? . . 320
Q5.3: What is the difference between functional and non-functional testing? 321
Q5.4: What is regression testing and when should it be performed? 321
Q5.5: What is the difference between a bug, defect, error, and failure? 322

52 TestPyramid 323
Q5.6: Whatis the test pyramid? 323
Q5.7: What are the layers of the traditional test pyramid? 323
Q5.8: Why should there be more unit tests than integration tests? 324
Q5.9: What is the ice cream cone anti-pattern? 325
Q5.10: What is the testing trophy and how does it differ from the pyramid? 326
Q5.11: What is the cost and speed trade-off at different pyramid levels? 327

53 UnitTesting o .o 328

Q5.12: Whatisaunittest? e 328

CONTENTS

54

55

5.6

5.7

5.8

59

ix
Q5.13: What are the characteristics of a good unittest? 329
Q5.14: What is the FIRST principle in unittesting?. 330
Q5.15: What is the difference between solitary and sociable unit tests? 331
Q5.16: What should and shouldn’t be tested at the unitlevel? 332
Q5.17: How many assertions should a unittesthave? 334
Q5.18: What is the AAA (Arrange-Act-Assert) pattern? 335
Q5.19: How do you name unit tests effectively? 336
Test-Driven Development 338
Q5.20: What is Test-Driven Development (TDD)?o o v v v v i v v 338
Q5.21: Explain the Red-Green-Refactorcycle in TDD 339
Q5.22: What are the benefits of practicing TDD? 340
Q5.23: What are the common challenges and criticisms of TDD? 341
Q5.24: How does TDD differ from writing tests aftercode? 342
Q5.25: What is the difference between TDD and BDD? 342
Q5.26: How does TDD influence software design? 343
JestFundamentals 345
Q5.27: What is Jest and why is it popular for JavaScript testing? 345
Q5.28: What is the difference between Jest and other testing frameworks like Mocha or
Jasmine? . . L 346
Q5.29: Explain the basic structure of aJesttestfile 347
Q5.30: What are describe, it, and test blocksinJest? 349
Q5.31: How does Jest discover and run testfiles? 350
Assertions and Matchers 352
Q5.32: What are matchers in Jest and how do theywork? 352
Q5.33: Explain the difference between toBe() and toEqual() 354
Q5.34: What is the difference between toEqual() and toStrictEqual()? 356
Q5.35: How do you test for null, undefined, and falsy valuesin Jest? 357
Q5.36: What is the toThrow() matcher and how do you test for exceptions? 358
Q5.37: What is the toMatchObject() matcher and when would you use it? 360
Q5.38: What are the resolves and rejects matchers for testing promises? 362
Mocking inJest 363
Q5.39: What is mocking and why is it important? oL 363
Q5.40: What's the difference between jest.fn(), jest.mock(), and jest.spyOn()? 364
Q5.41: How do you create mock functions with jestfn()? 365
Q5.42: How do you mock modules with jestmock()? 365
Q5.43: When should you use jest.spyOn()? v v i it 366
Q5.44: How do mockReturnValue() and mockResolvedValue() work? 367
Q5.45: What's the difference between mockClear(), mockReset(), and mockRestore()? . . 368
Q5.46: How do you mock timers (setTimeout, Date)? 369
AsyncTesting e 370
Q5.47: How do you testasynccodeinlJest?, 370
Q5.48: What are the different ways: callbacks, promises, async/await? 371
Q5.49: How do you test async/await functions? 372
Q5.50: What happens if you forget to return a promise? 373
Q5.51: How do jest.runAllTimers() and advanceTimersByTime() work? 374
Setupand Teardown 375
Q5.52: What are setup and teardown functions? 375
Q5.53: What's the difference between beforeEach, afterEach, beforeAll, and afterAll? . . 376
Q5.54: How do you scope setup and teardown to describe blocks? 377

CONTENTS

510 Snapshot Testing 379
Q5.55: What is snapshot testinginJest?, 379
Q5.56: When should you use snapshot testing vs traditional assertions? 380
Q5.57: What are the best practices for snapshot testing? 382
Q5.58: What are the drawbacks and pitfalls of snapshot testing? 383

511 Code Coverage o v v vt e e e 386
Q5.59: What is code coverage and why isitimportant? 386
Q5.60: What are the different coverage metrics (statements, branches, functions, lines)? 387
Q5.61: How do you configure coverage thresholdsinJest?. 388
Q5.62: What are the limitations of code coverage as a quality metric?. 390

5.12 Testing React Components 393
Q5.63: How do you set up Jest for testing React applications? 393
Q5.64: What is the difference between shallow rendering and full DOM rendering? . . . 394
Q5.65: How do you test React components with Jest and React Testing Library? 395
Q5.66: How do you test component props and state changes? 397
Q5.67: How do you test user interactions (clicks, form inputs)? 399
Q5.68: How do you test components that use React hooks? 401
Q5.69: How do you test components with context providers? 404
Q5.70: How do you test components that make APl calls? 406
Q5.71: What is the difference between getBy, queryBy, and findBy queries? 409

513 TestDoubles 412
Q5.72: Whatisatestdouble? 412
Q5.73: What's the difference between mocks, stubs, fakes, and spies? 412
Q5.74: When should you use mocks vs real implementations? 413
Q5.75: What is over-mocking and why is it problematic? 414
Q5.76: How do you decide whattomock? 415

5.14 Testing Best Practices 417
Q5.77: What are best practices for organizing test files? 417
Q5.78: How do you write maintainable and readable tests? 420
Q5.79: What is test isolation and why is itimportant? 422
Q5.80: How do you avoid flaky tests? 423
Q5.81: When should you use unit tests vs integration tests? 425
Q5.82: Should you test implementation details or behavior? 427
Q5.83: What are common anti-patterns in Jest testing? 429

5.15 Integration and E2E Testing 431
Q5.84: What is integration testing? 431
Q5.85: What's the difference between unit and integration testing? 431
Q5.86: What is end-to-end (E2E) testing? 432
Q5.87: What are the benefits and drawbacks of E2E tests? 433
Q5.88: What are popular E2E testing tools? L L 434
Q5.89: How do you handle flaky E2E tests? 435
Q5.90: What is the Page Object Model pattern? 436

516 CI/CD Integration 438
Q5.91: How do you run Jest in Cl environments? 438
Q5.92: What is the —ci flag and what doesitdo? 438
Q5.93: How do you integrate Jest with GitHub Actions? 439
Q5.94: How do you run Jest in watch mode for development? 441

CheatSheets 443

6.1 JavaScript Cheat Sheet 443

CONTENTS i

6.2 ReactCheatSheet 445
6.3 TypeScript Cheat Sheet 446
6.4 CSSCheatSheet 447
6.5 GitCheatSheet. 448

Additional Resources 451

How to Use This Guide

This guide contains carefully curated interview questions for Frontend Developer positions.
Whether you're preparing for your first junior role or aiming for a senior position, you'll find
relevant questions organized by topic and difficulty.

Difficulty Levels

Questions are marked with difficulty badges:

* [unior] — Entry-level fundamentals. If you're just starting out, master these first.

 [Mid] — Intermediate concepts requiring practical experience. Expected for mid-level roles.

* [Senior] — Advanced topics covering architecture, performance, and leadership. Required

for senior positions.

Recommended Study Approach

1.

Assess your level — Skim through chapters and note which questions you can answer
confidently.

. Focus on gaps — Spend more time on topics where you struggled.

Practice out loud — Explain answers as if in an interview. This builds confidence.
Study the code — Don't just read examples; type them out and experiment.

Use the cheat sheets — Review them the day before your interview.

Interview Reality

Interviewers often follow up with "Why?" or “"Can you give an example?” Prepare real
examples from your projects. Generic textbook answers are easy to spot.

Xiii

Xiv CONTENTS

What's Covered

Chapter Topics Questions
1. HTML & CSS Semantics, Layout, Responsive Design 54
2. JavaScript ES6+, Async, DOM, Event Loop 70
3. TypeScript Types, Generics, Utility Types 29
4. React Components, Hooks, State, Performance 82
5. Testing Jest, RTL, Unit & Integration Tests 94

6. Cheat Sheets Quick Reference for Interview Day —

Good luck with your interview!

HTML & CSS

The foundation of every web application begins with HTML and CSS. A deep understanding
of these technologies separates good developers from great ones. While frameworks come
and go, mastering semantic HTML and modern CSS patterns remains essential. This chapter
covers everything from HTML5's evolutionary improvements to advanced CSS techniques like
Grid, custom properties, and performance optimization. Whether you're preparing for a junior

position or a senior role, these questions will help you demonstrate both theoretical knowledge
and practical expertise.

1.1 HTML5 Fundamentals

Q1.1: What does the “5” in HTMLS5 represent and what are its key evolutionary
improvements? [Junior]

The "5” in HTMLS5 represents the fifth major revision of the HTML standard, released in 2014
after years of development by the W3C and WHATWG. HTML5 was revolutionary because it

transformed HTML from a purely structural language into a comprehensive platform for build-
ing modern web applications.

The key evolutionary improvements include native multimedia support with <video> and <audio>
elements that eliminated the need for Flash, semantic structural elements like <header>, <nav>,
and <article> that improved document structure and accessibility, powerful JavaScript APIs
including Canvas, Web Storage, Geolocation, and Web Workers, new form input types and vali-

dation attributes that enhanced user experience on mobile devices, and the simplified doctype
declaration.

Perhaps most importantly, HTML5 embraced the reality of how the web was being used, codi-
fying best practices that developers had been implementing with JavaScript libraries and pro-
viding native browser support for common patterns.

2 CHAPTER 1. HTML & CSS

Pro Tip

When discussing HTMLS5 in interviews, emphasize how it bridged the gap between docu-
ments and applications, making the browser a true application platform.

Q1.2: Which new structural content elements were introduced in HTML5 and how
do they enhance document semantics? [Junior]

HTMLS5 introduced several semantic structural elements that revolutionized how we organize
web content. The primary structural elements include <header> for introductory content or
navigation links, <nav> for navigation menus and links, <main> for the dominant content of the
document, <section> for thematic groupings of content, <article> for self-contained, indepen-
dently distributable content, <aside> for tangentially related content like sidebars, and <footer>
for concluding information.

These elements enhance document semantics by providing meaningful context that both
browsers and assistive technologies can understand. Using these elements properly creates
a logical document outline that screen readers can navigate efficiently, allows search engines
to better understand content hierarchy and importance, makes code more readable and main-
tainable for developers, and enables browsers to apply meaningful default styling.

The key is understanding that these elements describe what content is, not how it looks, which
is the essence of semantic markup.

<!-- Proper HTML5 document structure -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Article Page</title>
</head>
<body>
<header>
<nav><!-- Site navigation --></nav>
</header>

<main>
<article>
<header>
<hl>Article Title</h1>
<time datetime="2026-01-17">January 17, 2026</time>
</header>
<section>
<h2>First Section</h2>
<p>Content...</p>
</section>
</article>

<aside><!-- Related Llinks or ads --></aside>
</main>

1.1. HTML5 FUNDAMENTALS 3

<footer><!/-- Site footer --></footer>
</body>
</html>

Q1.3: What is the purpose of the <!pocTyre htm1> declaration and how does it differ
from previous DOCTYPE declarations? [Junior]

The <!pocTYPE html> declaration in HTMLS5 serves as a document type declaration that tells the
browser to render the page in standards mode rather than quirks mode. This simple declaration
is remarkably important despite its brevity.

Previous HTML versions required verbose DOCTYPE declarations that referenced specific DTD
files hosted on external servers. For example, HTML 4.01 Strict required a declaration like
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">,
which was not only difficult to remember but also created a dependency on external resources.

HTML5's simplified DOCTYPE is deliberately short and case-insensitive because HTMLS5 is not
based on SGML and doesn’t require a DTD reference. The declaration simply signals to the
browser “use the latest standards mode” without specifying which version of HTML. This
forward-compatible approach means that as HTML evolves, the same DOCTYPE continues to
work, ensuring your pages render consistently in standards mode regardless of browser up-
dates.

Common Mistake

Always include the DOCTYPE declaration as the very first line of your HTML document.
Without it, browsers fall into quirks mode, which can cause unpredictable rendering issues.

Q1.4: Why is HTML5 considered more semantic compared to previous HTML stan-
dards, and what are the implications for web accessibility? [Mid]

HTMLS5 is considered fundamentally more semantic because it replaced generic containers
with meaningful elements that describe content purpose rather than just presentation. Before
HTML5, developers built entire page structures using <div> elements with class names like
"header” or "nav”, which had no inherent meaning to browsers or assistive technologies. HTML5
introduced dedicated semantic elements that convey structural and contextual information
directly in the markup.

The implications for web accessibility are profound and multifaceted. Screen readers can now
identify page regions automatically, allowing users to jump directly to navigation, main con-
tent, or complementary information without navigating through every element. The semantic
structure creates an implicit document outline that assistive technologies use to help users
understand content hierarchy and relationships.

ARIA landmark roles, which developers previously had to add manually, are now implicit in
semantic elements, reducing the burden on developers while improving consistency. Search
engines can better understand content importance and context, potentially improving SEO.

4 CHAPTER 1. HTML & CSS

Most importantly, semantic HTML creates a more accessible web by default, rather than re-
quiring developers to remember to add accessibility features as an afterthought. In practice,
starting with semantic HTML often eliminates the need for additional ARIA attributes, following
the principle of using native HTML elements whenever possible before reaching for ARIA.

1.2 Semantic Elements

Q1.5: What are the most commonly used semantic elements in HTML5 and what
content do they represent? [Junior]

The most commonly used semantic elements in HTML5 each serve specific purposes in doc-
ument structure. The <header> element represents introductory content, typically containing
headings, logos, navigation, or search functionality, and can appear multiple times in a docu-
ment for different sections. The <nav> element contains major navigation blocks like site menus
or table of contents links. The <main> element wraps the dominant content of the page and
should appear only once per document.

The <article> element represents self-contained content that could be independently dis-
tributed, such as blog posts, news articles, or forum posts. The <section> element groups
thematically related content and typically includes a heading. The <aside> element contains
content tangentially related to the main content, like sidebars, pull quotes, or advertising. The
<footer> element represents concluding content for its nearest sectioning element, often con-
taining copyright information, links, or author details.

Additionally, <figure> and <figcaption> pair together for images with captions, <time> marks
up dates and times in a machine-readable format, and <mark> highlights referenced or relevant
text. Using these elements appropriately creates code that documents itself and requires fewer
comments to understand its structure.

Q1.6: How do elements like <section>, <article>, and <aside> differ from the tradi-
tional <div> element in terms of semantic meaning? [Mid]

The fundamental difference lies in semantic meaning versus generic containment. The <div>
element is semantically neutral, it's simply a container for grouping content for styling or script-
ing purposes and conveys no information about what it contains or its purpose.

In contrast, <section>, <article>, and <aside> each carry specific semantic meaning that
browsers, search engines, and assistive technologies can understand and act upon. An
<article> declares that its content is self-contained and independently distributable, some-
thing that makes sense on its own even when extracted from its context. This could be a
blog post that could be syndicated, a product card that represents a complete unit, or a user
comment that stands alone.

A <section> groups related content under a common theme and should almost always have a
heading that describes what the section is about. It's useful for breaking down an article into
logical parts or organizing a page into distinct areas.

An <aside> indicates that its content is supplementary to the main content but not essential
to understanding it, like a sidebar with related links or a pull quote that enhances but doesn’t

1.2. SEMANTIC ELEMENTS 5

drive the narrative.

The practical implication is that screen readers announce these elements differently, browsers
can apply default styling based on semantic meaning, and search engines weight content differ-
ently based on its structural role. The guiding question is: “Does this container have a specific
purpose that can be named?” If yes, there's probably a semantic element for it. If it's purely for
layout or styling hooks, <div> is appropriate.

<!-- Semantic structure: blog post page -->
<article>
<header>
<hl>Understanding Closures</h1l>
<time datetime="2026-01-17">Jan 17, 2026</time>
</header>

<section>
<h2>What is a Closure?</h2>
<p>Main explanation...</p>
</section>

<section>
<h2>Common Use Cases</h2>
<p>Practical examples...</p>
</section>

<aside>
<h3>Related Articles</h3>
Scope in JavaScript</1i>
</aside>

<footer>
<p>Author: Jane Developer</p>

</footer>

</article>

<!-- div: just for styling -->
<div class="card-wrapper">

<article><!-- The actual semantic content --></article>
</div>

Q1.7: What is the significance of <header> and <footer> elements and how should
they be properly implemented? [Junior]

The <header> and <footer> elements are sectioning content containers that provide introductory
and concluding information for their nearest ancestor sectioning element. Their significance
lies in creating clear document structure that both humans and machines can understand.

A <header> typically contains headings, logos, navigation, search forms, or author information.
Importantly, headers are not limited to the top of the page, you can have a <header> within
an <article> containing the article’s title and metadata, or within a <section> introducing that
section’s content.

6 CHAPTER 1. HTML & CSS

Similarly, <footer> elements contain concluding information like authorship, copyright, related
links, or back-to-top navigation, and can appear at both page and section levels.

For proper implementation, several principles apply: the page-level header typically appears
as a direct child of <body> and contains site-wide elements like the logo and main navigation.
Section-level headers introduce their content with relevant headings and metadata. Footer
content should genuinely be concluding or supplementary information, not just any content
that happens to be at the bottom of a section. Multiple headers and footers are allowed and
encouraged when they serve distinct sections.

The most common mistake is using these elements purely based on visual position rather than
semantic purpose, for example, wrapping footer content in a <div> simply because it doesn’t
"look” important enough for a semantic element.

Common Mistake

A <header> element cannot be placed inside another <header> or <footer>, and a <footer>
cannot be placed inside a <header> or another <footer>. These nesting restrictions ensure
logical document structure.

Q1.8: In which scenarios is the <main> element most appropriately used, and what
are its accessibility implications? [Mid]

The <main> element represents the dominant content of the document body, excluding content
that is repeated across multiple pages like site navigation, headers, footers, and sidebars. It
should be used to wrap the primary content that is unique to that specific page.

Appropriate uses include the central article on a blog post page, the product listing on a cat-
egory page, the search results on a search page, or the user profile information on a profile
page. The crucial rule is that there should be only one <main> element per page, and it should
not be a descendant of <article>, <aside>, <footers, <header>, O <nav>.

The accessibility implications are significant and practical. The <main> element is mapped to
the ARIA main landmark role, which allows screen reader users to jump directly to the primary
content with a single keyboard shortcut, bypassing repeated navigation and header content
that they've likely already encountered on previous pages.

This "skip to main content” functionality is built into the semantic element itself, eliminating
the need for the older pattern of adding visible or hidden “skip navigation” links. For users
navigating with assistive technology, this can save significant time and frustration, especially
on content-heavy sites. Search engines also use the <main> element as a signal for identifying
the most important content on the page, potentially influencing how content is indexed and
displayed in search results.

1.3. FORM ENHANCEMENTS 7

1.3 Form Enhancements

Q1.9: What new input types were introduced in HTML5 and how do they improve
user experience? [Junior]

HTML5 introduced numerous specialized input types that significantly improve user experi-
ence, especially on mobile devices. These include type="email" which validates email format
and shows an email-optimized keyboard on mobile devices with and period keys easily accessi-
ble, type="tel" which displays a numeric telephone keypad on touch devices, type="url" which
validates URLs and provides a keyboard with forward slash and .com shortcuts, type="number"
which allows numeric input with increment/decrement controls and prevents non-numeric en-
try, type="range" which creates a slider control for selecting a value within a range, type="date",
type="time", type="datetime-local" which provide native date and time pickers that respect lo-
cale settings, type="color" which shows a color picker interface, and type="search" which styles
the input as a search field and may show recent searches.

The real-world impact of these input types is substantial. Mobile users benefit tremendously
from context-appropriate keyboards that reduce typing errors and speed up data entry. Built-
in validation reduces the amount of JavaScript code needed for form validation. Native date
pickers eliminate the need for heavy JavaScript calendar libraries and automatically handle
locale-specific date formats.

The fallback behavior is excellent: browsers that don't support specific input types simply ren-
der them as standard text inputs, making them safe to use progressively. The key is to always
include server-side validation as well, since client-side validation can be bypassed and not all
browsers implement all input types consistently.

<!-- HTML5 form with enhanced input types -->
<form>

<label for="email">Email:</label>

<input type="email" id="email" required>

<label for="phone">Phone:</label>
<input type="tel" id="phone"
pattern="[0-9]{3}-[0-9]{3}-[0-9]{4}">

<label for="website">Website:</label>
<input type="url" id="website">

<label for="birthday">Birthday:</label>
<input type="date" id="birthday"
min="1900-01-01" max="2026-12-31">

<label for="quantity">Quantity (1-10):</label>
<input type="number" id="quantity"
min="1" max="10" value="1">

<button type="submit">Submit</button>
</form>

8 CHAPTER 1. HTML & CSS

Q1.10: What is the purpose of the required attribute and how does it interact with
client-side validation? [Junior]

The required attribute is a boolean attribute that specifies that an input field must be filled out
before submitting the form. When present, browsers will prevent form submission if the field
is empty and display a validation message to the user. This attribute works seamlessly with
HTML5's constraint validation API to provide client-side validation without writing JavaScript.

When a user attempts to submit a form with empty required fields, the browser automatically
focuses the first invalid field and displays a browser-native error message. The required at-
tribute interacts intelligently with different input types: for text inputs, at least one character
must be entered; for checkboxes, the box must be checked; for radio button groups, one op-
tion must be selected; for file inputs, a file must be chosen; and for select elements, an option
with a non-empty value must be selected.

The validation happens immediately before form submission, and the invalid and valid
pseudo-classes are applied to elements based on their validation state, allowing styling with
CSS.

However, it's essential to emphasize that client-side validation is for user experience, not secu-
rity. It provides immediate feedback and prevents unnecessary server requests, but it can be
bypassed. Server-side validation is mandatory for security and data integrity.

Pro Tip

Use the CSS pseudo-classes :valid, :invalid, and :required to provide visual feedback on
form field states without JavaScript.

Q1.11: How does HTML5 handle built-in validation messages and how can they
be customized? [Mid]

HTML5 provides built-in validation messages that appear when form constraints are violated,
such as required fields being empty or email inputs containing invalid formats. These de-
fault messages are generated by the browser and vary in wording and styling across different
browsers and locales.

While this inconsistency can be frustrating from a design perspective, the Constraint Val-
idation APl provides methods to customize these messages. The primary method is
setCustomvalidity(), which allows setting a custom error message on a form element. When
calling this method with a non-empty string, the element is considered invalid and displays
your custom message. Calling it with an empty string clears the custom validation.

The typical implementation involves listening to the invalid event, which fires when a form ele-
ment fails constraint validation during submission attempt. A validation object checks the ele-
ment's validity property, which contains flags like valueMissing, typeMismatch, patternMismatch,
and toolong, then sets appropriate custom messages based on which constraint failed.

Complete customization of the validation Ul is possible by preventing the default validation
bubbles with event.preventDefault() in the invalid event handler and displaying custom error
messages using custom HTML elements and CSS. However, the general recommendation is

1.4. DATA STORAGE 9

to use the native validation Ul when possible because it's accessible by default, respects user
preferences, and requires less code to maintain.

// Custom validation messages
const emailInput = document.querySelector('input[type="email"]");

emailInput.addEventListener('invalid', (event) => {
if (emailInput.validity.valueMissing) {
emailInput.setCustomValidity('Please enter your email address.');
} else if (emaillnput.validity.typeMismatch) {
emailInput.setCustomValidity('Please enter a valid email address.');
}
3

// Clear custom message on input to allow revalidation
emailInput.addEventListener('input’, () => {
emailInput.setCustomValidity('');

1)

1.4 Data Storage

Q1.12: What are the differences between 1ocalstorage and sessionstorage, and how
do they compare to traditional cookies? [Mid]

Both localstorage and sessionstorage are part of the Web Storage API and provide key-value
storage in the browser, but they differ significantly in persistence and scope. The localStorage
data persists indefinitely until explicitly cleared by the user or the application, survives browser
restarts and tab closures, and is shared across all tabs and windows from the same origin.

The sessionstorage data persists only for the duration of the page session, is cleared when
the tab or window is closed, and is isolated to the specific tab where it was created, meaning
different tabs have separate sessionStorage even for the same page.

Compared to traditional cookies, Web Storage offers several advantages. Storage capacity is
much larger, typically 5-10MB per origin compared to cookies’ 4KB limit. Data is never sent to
the server automatically with HTTP requests, reducing bandwidth and improving performance.
The APl is simpler and more intuitive with straightforward setItem(), getItem(), and removeItem()
methods.

However, cookies still have important use cases: they can be set with expiration dates, sent
automatically with HTTP requests which is essential for authentication, accessed server-side,
and configured with security flags like HttpOnly and Secure.

In professional development, best practices are to use localstorage for user preferences and
Ul state that should persist across sessions, sessionstorage for temporary data like form drafts
or wizard state within a single session, and cookies exclusively for authentication tokens and
session management where server-side access is required.

10 CHAPTER 1. HTML & CSS

// localStorage: persists across sessions
localStorage.setItem('theme', 'dark');

const theme = localStorage.getItem('theme');
localStorage.removeItem(' theme");

// sessionStorage: cleared when tab closes
sessionStorage.setItem('formDraft’, JSON.stringify(formData));
const draft = JSON.parse(sessionStorage.getItem('formDraft'));

// Both have same API, different Llifecycle
// Both are synchronous (can block UI)
// Both store strings only (must serialize objects)

Common Mistake

Web Storage is synchronous and can block the main thread. For large amounts of data
or frequent operations, consider using IndexedDB instead, which provides asynchronous
access to larger storage.

Q1.13: In what scenarios might IndexedDB be more advantageous than
localStorage? [Senior]

IndexedDB becomes advantageous when storing large amounts of structured data, performing
complex queries, or maintaining application performance with synchronous operations. The
key scenarios where IndexedDB is preferred over localstorage include: storing large datasets
like offline application data, cached API responses, or media files that exceed localStorage's
5-10MB limit, since IndexedDB can handle hundreds of megabytes or more.

Applications requiring complex queries, indexes, or range queries benefit from IndexedDB's
database-like capabilities, whereas localstorage only supports simple key-value lookups. For
progressive web apps that need robust offline functionality, IndexedDB provides transaction
support ensuring data integrity even if operations are interrupted.

When dealing with binary data like images, videos, or files, IndexedDB can store Blob and File
objects directly, while localstorage requires base64 encoding which significantly increases data
size. The asynchronous API of IndexedDB prevents blocking the main thread during read/write
operations, which is critical for performance when handling large amounts of data.

Applications that need to store structured data with relationships between entities benefit from
IndexedDB's object stores and indexes. In practice, IndexedDB is used for building offline-
capable email clients that cache thousands of messages with full-text search, e-commerce
apps that store entire product catalogs for offline browsing, and collaborative editing tools
that maintain local copies of documents with revision history.

The tradeoff is complexity: IndexedDB’s API is significantly more complex than localstorage,
often requiring a wrapper library like Dexie.js or localForage to make it manageable.

1.5. ACCESSIBILITY 11

1.5 Accessibility
Q1.14: How do semantic elements in HTML5 improve web accessibility? [Mid]

Semantic HTML5 elements fundamentally improve web accessibility by providing meaningful
structure that assistive technologies can understand and navigate. When using elements like
<nav>, <main>, <header>, and <footer>, screen readers automatically identify these regions and
allow users to jump between them using landmark navigation shortcuts.

A blind user can press a single key to jump from the navigation to the main content, bypassing
repetitive headers and menus they've already heard on previous pages. This is far more efficient
than tabbing through every link and element sequentially.

Semantic elements create an implicit document outline that assistive technologies use to
present content hierarchy, helping users understand the relationship between different sec-
tions of content. Headings (<h1> through <he>) used within semantic sections create a logical
table of contents that screen reader users can navigate to quickly find relevant information.

Elements like <article> indicate self-contained content that can be announced as a distinct unit,
while <aside> signals supplementary content that users can skip if they're focused on the main
narrative. The <figure> and <figcaption> combination associates images with their descriptions
programmatically. The <time> element with a datetime attribute provides machine-readable
date information that can be announced in the user’s preferred format.

Beyond screen readers, semantic HTML benefits users with cognitive disabilities by providing
consistent, predictable structure across websites. It also enables browser extensions and read-
ing modes to extract and reformat content intelligently. In accessibility testing, proper semantic
HTML often eliminates the need for additional ARIA attributes, following the principle of "no
ARIA is better than bad ARIA."

Q1.15: What role do aria-* attributes play and when should they be used? [Mid]

ARIA (Accessible Rich Internet Applications) attributes provide additional semantic information
to assistive technologies when native HTML elements are insufficient or when building custom
interactive widgets that have no HTML equivalent. The fundamental rule in accessibility work
is: the first rule of ARIA is "don’t use ARIA.” Native HTML elements with built-in semantics
should always be preferred because they have keyboard handling, focus management, and
accessibility features built in.

ARIA attributes are used in specific scenarios: when using generic elements like <div> or
to build custom widgets like tabs, accordions, or tree views, aria-* attributes communicate the
role, state, and properties of these elements. For dynamic content that changes without page
reload, aria-live regions announce updates to screen reader users.

When the visible label for a form control is not adequately descriptive, aria-label or
aria-labelledby provide accessible names. For expanded/collapsed states in custom disclosure
widgets, aria-expanded communicates the current state. When building custom tab panels or
other widgets with hidden content, aria-hidden indicates that content should be ignored by
assistive technologies.

12 CHAPTER 1. HTML & CSS

The critical categories of ARIA attributes include roles that define what an element is (like
role="button" Or role="navigation"), states and properties that describe the current condi-

tion (like aria-checked Or aria-disabled), and relationships that connect related elements (like
aria-describedby Or aria-controls).

The most common mistake is adding ARIA to standard HTML elements unnecessarily, like
<button role="button">, which is redundant and can actually break accessibility if done incor-
rectly. ARIA modifies how assistive technologies interpret elements but doesn’t add functional-
ity, so all keyboard interactions and focus management must be implemented with JavaScript.

<!-- Good: Native HTML, no ARIA needed -->
<button>Click Me</button>
<nav><!-- Implicit navigation role --></nav>

<!-- Necessary ARIA: Custom widget -->
<div role="tablist">
<button role="tab"
aria-selected="true"
aria-controls="panell">
Tab 1
</button>
</div>
<div role="tabpanel”
id="panell"
aria-labelledby="tab1">
<!-- Content -->
</div>

<!-- Necessary ARIA: Dynamic updates -->
<div aria-live="polite"
aria-atomic="true">
<!-- Status messages announced to screen readers -->
</div>

1.6 Advanced HTML

Q1.16: What is the purpose of the draggabie attribute in HTML5 and how can you
implement drag-and-drop functionality? [Mid]

The draggable attribute enables native drag-and-drop functionality in HTML5, allowing
elements to be dragged and dropped without requiring third-party libraries. Setting
draggable="true" on an element makes it draggable, while draggable="false" explicitly prevents
dragging.

To implement functional drag-and-drop, several key events are involved. On the draggable
element: dragstart fires when dragging begins, where dataTransfer.setbata() is typically used
to store information about what's being dragged, drag fires continuously while dragging, and
dragend fires when dragging ends.

1.6. ADVANCED HTML 13

On the drop target element: dragenter fires when a dragged element enters the target, dragover
which must call preventDefault() to allow dropping, dragleave when the dragged element leaves
the target, and drop where preventDefault() is called and the transferred data is retrieved with
dataTransfer.getData().

The dataTransfer object is central to the drag-and-drop API, carrying data between the drag
source and drop target. In practice, drag-and-drop is implemented for file upload interfaces
where users drag files from their desktop, kanban boards where tasks are dragged between
columns, reorderable lists where items can be rearranged, and visual builders where compo-
nents are dragged onto a canvas.

The main challenges are providing visual feedback during dragging, handling the various
browser quirks especially around default drag behaviors, ensuring keyboard accessibility since
drag-and-drop is mouse-only, and managing the different effectAllowed and dropEffect val-
ues that control cursor appearance. Mobile support is limited, often requiring touch-specific
libraries for cross-device compatibility.

<!-- Draggable element -->
<div draggable="true"
id="dragl"
ondragstart="dragStart(event)">
Drag me
</div>

<!-- Drop target -->
<div id="dropzone"
ondragover="allowDrop(event)"
ondrop="drop(event)">
Drop here
</div>

<script>

function dragStart(event) {
// Store data about what's being dragged
event.dataTransfer.setData('text/plain', event.target.id);
event.dataTransfer.effectAllowed = 'move’;

function allowDrop(event) {
// Prevent default to allow drop
event.preventDefault();
event.dataTransfer.dropEffect = 'move’;

}

function drop(event) {
event.preventDefault();
const data = event.dataTransfer.getData('text/plain');
const draggedElement = document.getElementById(data);
event.target.appendChild(draggedElement);

}

</script>

14 CHAPTER 1. HTML & CSS

Q1.17: In what scenarios would you use the <template> element? [Mid]

The <template> element holds HTML content that is not rendered when the page loads but can
be instantiated and inserted into the DOM using JavaScript. Templates are used in scenarios
where reusable HTML structures need to be cloned and populated with data multiple times.

The key advantage is that template content is completely inert: scripts don't run, images don't
load, styles don't apply, and the content is not part of the document until activated. This makes
templates ideal for several use cases.

For client-side rendering, row templates for tables or card layouts get populated with data
from API responses. In component-based development before frameworks became ubiqui-
tous, templates provided a way to define component markup separately from logic. For web
components, the <template> element is fundamental to Shadow DOM, defining the internal
structure of custom elements.

Dynamic forms benefit from templates for repeating field groups that users can add or remove.
Modal dialogs and tooltips that appear on demand can be defined as templates and cloned
when needed.

The workflow typically involves defining the template in HTML with placeholder content or
data attributes, selecting the template element with JavaScript, cloning its content using
template.content.cloneNode(true), populating the clone with actual data, and inserting it into
the document.

The major benefit compared to creating elements entirely with JavaScript is that templates are
easier to read and maintain, they can be designed visually in HTML, and they benefit from
browser optimization. Modern frameworks like Vue and Lit use template elements extensively
for their component systems.

<!-- Template definition -->
<template id="product-card">
<div class="card">

<h3 class="card-title"></h3>
<p class="card-price"></p>
<button>Add to Cart</button>
</div>
</template>

<div id="product-list"></div>

<script>
const template = document.getElementById('product-card');
const productList = document.getElementById('product-list');

// Function to create product card from template
function addProduct(product) {

// Clone template content

const clone = template.content.cloneNode(true);

// Populate with data

1.6. ADVANCED HTML 15

clone.querySelector('.card-image').src = product.image;
clone.querySelector('.card-title').textContent = product.name;
clone.querySelector('.card-price").textContent = product.price;

// Insert into DOM
productList.appendChild(clone);
}

</script>

Q1.18: What is the purpose of the <picture> element and how does it help in creat-
ing responsive images? [Senior]

The <picture> element provides art direction and format selection for responsive images, solv-
ing problems that the element’s srcset attribute alone cannot address. While srcset
allows the browser to choose from different resolutions of the same image based on device
pixel density and viewport width, <picture> gives developers explicit control over which image
source is used based on media queries or image format support.

The <picture> element is used when art direction is needed, meaning serving completely dif-
ferent images with different compositions or crops at different viewport sizes, not just scaled
versions of the same image. For example, showing a wide landscape photo on desktop but a
cropped portrait version on mobile that keeps the subject centered.

The element is also crucial for serving modern image formats with fallbacks, like providing
WebP or AVIF images for browsers that support them while falling back to JPEG or PNG for
older browsers.

The structure consists of zero or more <source> elements with media, srcset, and type attributes,
followed by a required element that serves as the fallback. The browser evaluates <source>
elements in order and uses the first one that matches.

In implementation, <picture> combines with srcset and sizes attributes on <source> elements to
provide both art direction and resolution selection. Common use cases include serving differ-
ent aspect ratios for mobile versus desktop, cropping images differently to emphasize subjects
on small screens, serving high-resolution retina images only where needed, and progressively
enhancing with new formats while maintaining broad browser support.

The key consideration is that the element inside must always be included, as it defines
the accessible name, dimensions, and the ultimate fallback if no source matches.

<!-- Art direction: different crops for different sizes -->
<picture>
<source media="(min-width: 1200px)"
srcset="hero-wide.jpg">
<source media="(min-width: 768px)"
srcset="hero-medium.jpg">
<img src="hero-mobile.jpg"
alt="Hero image">
</picture>

16 CHAPTER 1. HTML & CSS

<!-- Format selection with fallback -->
<picture>
<source type="image/avif"
srcset="photo.avif">
<source type="image/webp"
srcset="photo.webp">
<img src="photo.jpg"
alt="Photograph">
</picture>

<!-- Combined: format + resolution + art direction -->
<picture>
<source media="(min-width: 768px)"
type="image/webp"
srcset="hero-desktop.webp 1x,
hero-desktop@2x.webp 2x">
<source media="(min-width: 768px)"
srcset="hero-desktop.jpg 1x,
hero-desktop@2x.jpg 2x">
<source type="image/webp"
srcset="hero-mobile.webp 1x,
hero-mobile@2x.webp 2x">
<img src="hero-mobile.jpg"
alt="Hero image">
</picture>

1.7 CSS Basic Concepts
Q1.19: What is CSS and why is it used? [Junior]

CSS (Cascading Style Sheets) is a stylesheet language that describes the presentation and visual
formatting of HTML documents. CSS transforms raw HTML structure into polished, visually
appealing interfaces.

CSS is used to separate content from presentation, following the principle of separation of con-
cerns where HTML defines what content is and CSS defines how it looks. This separation pro-
vides numerous benefits: the entire visual design of a website can be changed without touching
the HTML content, consistent styling can be applied across thousands of pages by linking to
a single stylesheet, multiple visual themes can be created for the same content, optimization
for different devices and screen sizes is possible with responsive design, and maintainability
improves by keeping styling code organized separately from structure and behavior.

CSS works by selecting HTML elements and declaring style properties for them. The cascading
nature means that multiple style rules can apply to the same element, and the browser uses
specificity and source order to determine which styles actually take effect.

Beyond basic styling like colors and fonts, modern CSS enables complex layouts with Flexbox
and Grid, animations and transitions for interactive feedback, transformations for visual effects,
and custom properties for themeable design systems.

1.7. CSS BASIC CONCEPTS 17

In professional development, CSS is essential for creating user interfaces that are not only
functional but also accessible, responsive, and aligned with brand guidelines. Without CSS, all
websites would look like unstyled HTML documents with default browser styling, black text on
white backgrounds, and Times New Roman font.

Q1.20: How do inline, inline-block, and block-level elements differ? [Junior]

These three display types fundamentally change how elements are laid out and what styling
properties they accept.

Block-level elements start on a new line and stretch to fill the full width of their container by
default. They stack vertically, respect width and height properties, and accept all margin and
padding values. Common block elements include <div>, <p>, <h1>-<h6>, <section>, and <article>.

Inline elements flow within text content, only taking up as much width as necessary. They do
not start on a new line, ignore width and height properties, and respect only left and right
margin and padding (vertical margin and padding don’t push other elements away). Common
inline elements include , <a>, , , and <code>.

Inline-block elements are a hybrid that flows inline like text but behaves like a block for styling
purposes. They don't start on a new line but sit on the same line as adjacent content, yet they
respect width, height, and all margin and padding properties. This makes inline-block ideal
for creating horizontal navigation menus, button groups, and grid-like layouts before Flexbox
became widely supported.

In CSS work, display types are frequently changed to achieve specific layouts: converting block
elements to inline-block for horizontal arrangement, making inline elements block-level to
allow full width clickable areas, or using display: flex or display: grid which creates new for-
matting contexts altogether. The key insight is that display type is not intrinsic to the element,
it's a CSS property that can be changed to suit the design needs.

/* Block elements */

div, p, hil {
display: block; /* Default for these elements */
width: 100%; /* Respects width */
margin: 20px ©; /* Respects all margins */

}

/* Inline elements */
span, a, strong {

display: inline; /* Default for these elements */
width: 100px; /* Ignored! */
margin: 20px; /* Only left/right applied */
}
/* Inline-block: best of both */
.nav-item {
display: inline-block;
width: 150px; /* Respects width */

padding: 1@px 20px; /* Respects all padding */

18 CHAPTER 1. HTML & CSS

margin: © 10px; /* Respects all margins */

}

Q1.21: Can you explain the differences between margin and padding? [Junior]

Margin and padding are both spacing properties in the CSS box model, but they create space
in different locations and behave differently in several important ways.

Padding is the space between an element’'s content and its border, creating internal spac-
ing within the element. When padding is added, the element’s total size increases unless
box-sizing: border-box is being used. Padding inherits the background color and background
image of the element, making it visually part of the element. Padding cannot have negative
values and never collapses between elements.

Margin, in contrast, is the space outside an element’s border, creating external spacing between
elements. Margins are always transparent, showing the parent element’s background through.
Margins can have negative values, which pull elements closer together or even overlap them.
Most notably, vertical margins between adjacent elements collapse, meaning the larger margin
wins rather than the margins adding together.

In CSS work, padding is used to create breathing room inside containers, ensuring content
doesn’t touch the edges of colored backgrounds or borders. Margin is used to create sep-
aration between distinct elements like spacing between paragraphs or sections. A common
pattern is setting margin on child elements rather than padding on the parent to space items
apart, which gives more flexibility. The horizontal margin auto value is special and used for
centering block elements.

Understanding margin collapse is crucial for avoiding unexpected spacing: when two vertical
margins meet, only the larger one is applied, which can cause confusion when spacing doesn't
seem to add up as expected.

/* Padding: space inside the element */

.card {
background: lightblue;
padding: 20px; /* Content is 20px from edges */
/* Background color extends through padding */

}

/* Margin: space outside the element */

.card {
margin: 20px; /* 20px space around the element */
/* Margin is transparent */

}

/* Margin collapse example */
.section {
margin-bottom: 30px;
}
.next-section {
margin-top: 20px;

1.7. CSS BASIC CONCEPTS 19

/* Actual space between sections: 30px (not 56px!) */
/* Margins collapse, Llarger value wins */

}

/* Centering with margin auto */
.container {
width: 960px;
margin: © auto; /* Centers horizontally */

}

Q1.22: What does the CSS box model represent? [Junior]

The CSS box model is the fundamental concept that describes how every HTML element is
represented as a rectangular box composed of four distinct areas: the content area containing
the actual content like text or images, the padding area providing transparent space around
the content, the border area which can have visible lines or remain transparent, and the margin
area creating transparent space outside the border to separate the element from others.

Understanding how these layers interact is essential for predictable layouts. By default, when
setting a width or height on an element using box-sizing: content-box, only the size of the
content area is being set, and any padding or border adds to the total rendered size. This
often causes unexpected overflow or layout breaks because the calculated total width becomes
content width plus left padding plus right padding plus left border plus right border.

The modern approach uses box-sizing: border-box, which includes padding and border in the
specified width and height, making sizing intuitive and predictable. In CSS workflows, setting
box-sizing: border-box globally as the first rule in the stylesheet is a standard practice.

The box model affects how elements are sized, how they interact with surrounding elements,
and how their total space is calculated. Browser developer tools visualize the box model when
inspecting elements, showing each layer in a different color and displaying the calculated sizes,
which is invaluable for debugging layout issues.

Margin behaves uniquely with the auto value for horizontal centering and exhibits collapse

behavior with vertical margins, while padding and border are more straightforward.

Pro Tip

Always use box-sizing: border-box with a universal selector to make sizing intuitive. This
is one of the most common CSS reset patterns.

Q1.23: How do you specify colors in CSS? [Junior]

CSS provides multiple color notation systems, each with specific use cases and advantages.

Named colors like red, blue, or darkslategray are convenient for quick prototyping but limited to
about 140 predefined colors. Hexadecimal notation like #FF5733 represents colors as red, green,
and blue values in base-16, with an optional fourth pair for alpha transparency (#FF57338e).

20 CHAPTER 1. HTML & CSS

RGB notation like rgb(255, 87, 51) uses decimal values from 0-255 for red, green, and blue
channels, while RGBA like rgba(255, 87, 51, 0.5) adds an alpha channel for transparency from
0 (fully transparent) to 1 (fully opaque).

HSL notation like hs1(1e, 10e%, 6e%) specifies hue as a degree on the color wheel (0-360), satu-
ration as a percentage, and lightness as a percentage, with HSLA adding alpha for transparency.
In design work, HSL is often preferred for creating color schemes because adjusting hue cre-
ates analogous colors, adjusting saturation creates tints and shades, and adjusting lightness
creates variations while maintaining the base color identity.

Modern CSS also supports currentColor keyword which inherits the element’s text color, use-
ful for icons and borders that should match text, and CSS custom properties for maintaining
consistent color systems. The newest color functions include color-mix() for blending colors,
rgb() with space-separated values and optional alpha, and new color spaces like oklch() for
perceptually uniform color manipulation.

For production, colors are typically organized using CSS custom properties in a design to-
ken system that defines semantic names like --color-primary rather than littering hex codes
throughout the stylesheet.

/* Different color notations */
.examples {
/* Named color */

color: crimson;

/* Hexadecimal */
background: #BE©B31;
border: 1px solid #BE©B3180; /* With alpha */

/* RGB/RGBA */
color: rgb(190, 11, 49);
background: rgba(19e, 11, 49, 0.5);

/* HSL/HSLA */
color: hsl(350, 89%, 39%);
background: hsla(350, 89%, 39%, 0.5);

/* Design system with custom properties */
:root {
--color-primary: #BEOB31;
--color-primary-light: hsl(350, 89%, 60%);
--color-primary-dark: hsl(350, 89%, 20%);
--color-text: #333;
--color-background: #fff;

.button {
background: var(--color-primary);
color: var(--color-background);

}

1.7. CSS BASIC CONCEPTS 21

Q1.24: What is the purpose of the “reset” or “normalize” in CSS? [Mid]

CSS resets and normalizers solve the problem of inconsistent default styling across different
browsers. Every browser applies default styles to HTML elements, but these defaults vary be-
tween browsers and can cause unexpected visual inconsistencies.

A CSS reset aggressively removes all browser default styling, typically setting margins, padding,
and other properties to zero or standardized values, creating a blank slate where every element
looks the same initially. The most famous example is Eric Meyer's CSS Reset.

A CSS normalizer, like Normalize.css, takes a more conservative approach by preserving use-
ful defaults while fixing browser inconsistencies and bugs. It makes elements render consis-
tently across browsers while maintaining helpful defaults like distinguishing headings from
paragraphs.

In professional work, the normalize approach is often preferred because starting from absolute
zero often means rebuilding sensible defaults for every element, which is time-consuming and
error-prone. The typical approach is including a normalize or reset stylesheet as the first CSS
file before custom styles.

Modern development often uses a hybrid approach: starting with Normalize.css for consis-
tency, then adding targeted resets for specific properties. Common additions include setting
box-sizing: border-box universally, removing default margins on common elements, setting a
consistent font stack, and establishing a baseline for focus styles.

Many CSS frameworks like Bootstrap and Tailwind include their own resets as part of the frame-
work. The goal isn't to make everything look identical but to create a predictable baseline that
reduces cross-browser debugging time and ensures custom styles are applied consistently.

/* Modern minimal reset approach */
*, *::before, *::after {
box-sizing: border-box;

}
*A{
margin: 0;
padding: ©;
}
body {

line-height: 1.5;
-webkit-font-smoothing: antialiased;

}

img, picture, video, canvas, svg {
display: block;
max-width: 100%;

}

input, button, textarea, select {
font: inherit;

}

22 CHAPTER 1. HTML & CSS

p, hi, h2, h3, h4, h5, h6 {
overflow-wrap: break-word;

}

/* Or use a Llibrary */
@import url('normalize.css');

1.8 Selectors and Specificity

Q1.25: What are the different types of CSS selectors and when would you use
them? [Junior]

CSS provides a rich variety of selectors for targeting elements with precision and flexibility.

Type selectors like p or div select all elements of that type and are useful for establishing base-
line styles. Class selectors like .button select elements with that class attribute and are the most
commonly used for reusable styling patterns. ID selectors like #header select a single element
with that unique ID and should be used sparingly due to their high specificity.

Attribute selectors like [type="text"] select elements based on attributes and their values,
useful for styling forms or links. Pseudo-class selectors like :hover, :focus, :nth-child(), and
:disabled select elements based on their state or position.

Pseudo-element selectors like ::before, ::after, ::first-line, and ::selection select specific
parts of elements or create virtual elements.

Combinators connect selectors to define relationships: descendant selector (div p) selects all
paragraphs inside divs at any depth, child selector (div > p) selects only direct children, ad-
jacent sibling selector (h2 + p) selects the first paragraph immediately following an h2, and
general sibling selector (h2 ~ p) selects all paragraphs that are siblings after an h2.

Universal selector * selects all elements and is used carefully due to performance considerations.
In practice, selectors are built by combining these types for precise targeting, like .card:hover
.card__title Or input[type="email"]:focus.

The principle to follow is using the least specific selector that accomplishes the goal, favoring

classes over IDs and avoiding overly complex selector chains that hurt maintainability.

/* Type selector */
p { color: #333; }

/* Class selector (most common) */
.button { background: blue; }

/* ID selector (use sparingly) */
#main-header { height: 80px; }

/* Attribute selectors */

1.8. SELECTORS AND SPECIFICITY 23

input[type="email"] { border-color: green; }
alhrefr="https"] { /* Starts with https */ }
alhref$=".pdf"] { /* Ends with .pdf */ }

/* Pseudo-classes */

button:hover { background: darkblue; }
input:focus { outline: 2px solid blue; }
li:nth-child(odd) { background: #f5f5f5; }

/* Pseudo-elements */
.quote: :before { content: "' }
p::first-line { font-weight: bold; }

/* Combinators */

.card p { /* Descendant: any depth */ }
.card > p { /* Child: direct only */ }
h2 + p { /* Adjacent sibling */ }

Q1.26: How does the cascade and specificity work in CSS? [Mid]

The cascade is the algorithm browsers use to determine which CSS rules apply when multiple
rules target the same element and property. Understanding the cascade is essential for writing
maintainable CSS and debugging style conflicts.

The cascade considers three factors in order: importance, specificity, and source order. Impor-
tance is determined by whether a declaration uses !important, which should be avoided except
for utility classes or overriding third-party styles.

Specificity calculates how specific a selector is using a point system: inline styles get 1000
points, each ID gets 100 points, each class, attribute selector, or pseudo-class gets 10 points,
and each element or pseudo-element gets 1 point. For example, #nav .menu 1i has a specificity
of 100 + 10 + 1 = 111, while .nav .menu .item has 10 + 10 + 10 = 30.

When specificity is equal, source order determines the winner, with later declarations overriding
earlier ones.

In development practice, specificity is managed by keeping selectors as flat and simple as
possible, avoiding deeply nested selectors that inflate specificity and make styles difficult to
override. Single classes are used whenever possible rather than chaining multiple classes or
combining with element selectors unnecessarily. The BEM naming convention helps maintain
low, consistent specificity across a codebase.

When debugging why styles aren’t applying, inspecting the element in DevTools shows which
rules are being overridden and their specificity values. Understanding cascade and specificity
prevents the common anti-pattern of adding !important everywhere to force styles to apply,
which creates technical debt and makes the codebase progressively harder to maintain.

/* Specificity examples (points in comments) */

/* 1 - element selector */

24 CHAPTER 1. HTML & CSS

p { color: black; }

/* 10 - class selector */
.text { color: blue; }

/* 11 - class + element */

p.text { color: green; }

/* 20 - two classes */
.card .text { color: orange; }

/* 100 - ID selector */
#tcontent { color: red; }

/* 111 - ID + class + element */
#tcontent .text p { color: purple; }

/* 1000 - inline style */
<p style="color: yellow;">

/* limportant overrides everything (avoid!) */
.text { color: pink !important; }

/* Best practice: low, flat specificity */
.card__title { color: #333; }

Q1.27: What are pseudo-classes and pseudo-elements? Give examples of each.
[Junior]

Pseudo-classes and pseudo-elements are special selectors that target elements based on state
or position, or create virtual elements, rather than targeting elements directly by their type,
class, or ID.

Pseudo-classes select elements in a particular state or position and use a single colon syntax.
Common examples include :hover for when the cursor is over an element, :focus for when an
element has keyboard focus, :active for the moment an element is being activated, :visited
for visited links, :disabled for disabled form controls, :checked for checked radio buttons or
checkboxes, :first-child and :last-child for positional selection, :nth-child(n) for selecting
elements by formula or pattern, and :not() for excluding elements.

Pseudo-elements create virtual elements that don't exist in the HTML and use double colon syn-
tax (though single colon works for backwards compatibility). The most common are : :before
and ::after which insert content before or after an element’s content, : : first-1letter for styling
the first letter of a text block, : : first-1ine for the first line of text, and : :selection for text high-
lighted by the user.

In CSS work, : :before and : :after are used extensively for decorative elements like icons, quota-
tion marks, or geometric shapes that would clutter the HTML. These pseudo-elements require
the content property even if it's empty.

1.8. SELECTORS AND SPECIFICITY 25

Pseudo-classes are used for interactive states, ensuring keyboard and mouse users have clear
visual feedback. The distinction is simple: pseudo-classes select existing elements in a particu-
lar state, while pseudo-elements create new virtual elements for styling.

/* Pseudo-classes: element states/positions */
a:hover {

color: blue;

text-decoration: underline;

input:focus {
outline: 2px solid blue;
box-shadow: © @ © 3px rgba(e, 0, 255, 0.1);

li:nth-child(odd) {
background: #f5f5f5;

button:disabled {
opacity: 0.5;
cursor: not-allowed;

/* Pseudo-elements: virtual elements */
.quote: :before {
content: '\ 201C'; /* Left double quote */
font-size: 2em;
color: #999;

.external-link::after {
content: ' \ 2197'; /* External Llink icon */

p::first-letter {
font-size: 2em;
font-weight: bold;
float: left;

::selection {
background: yellow;
color: black;

26 CHAPTER 1. HTML & CSS

Q1.28: What is the difference between the “">" (child) and ” ” (descendant) com-
binators? [Junior]

These two combinators define different relationships between elements in the selector chain.

The descendant combinator (space) selects all matching elements that are descendants at any
depth within the specified ancestor. For example, div p selects all paragraph elements any-
where inside a div, whether they're direct children, grandchildren, or nested even deeper. This
is the most common combinator but can sometimes be too broad, selecting more elements
than intended.

The child combinator (>) selects only direct children, not deeper descendants. For example, div
> p selects only paragraph elements that are immediate children of a div, ignoring paragraphs
nested inside other elements within the div.

In CSS work, the child combinator is used when precise control over styling specific levels of
nesting is needed, which is common in component-based architectures. For instance, in a
navigation menu, .nav > ul styles only the top-level list, not nested sublists.

The performance difference is minimal in modern browsers, but the child combinator is more
specific about intent and can prevent unintended styling of deeply nested elements. A com-
mon scenario is styling a card component where direct children need to be styled differently
from nested content: .card > .card__header ensures styling of the card’s own header, not head-
ers that might appear in nested cards or other components within the card.

The descendant combinator is appropriate when styling all matching descendants regardless
of nesting depth is genuinely desired, such as making all links within an article a particular
color.

/* HTML structure */
<div class="container">
<p>Direct child paragraph</p>
<section>
<p>Nested paragraph</p>
</section>
</div>

/* Descendant combinator (space) */
.container p {

/* Selects BOTH paragraphs */

/* Any depth of nesting */

color: blue;

}

/* Child combinator (>) */

.container > p {
/* Selects ONLY the direct child paragraph */
/* Not the nested one */
color: red;

}

/* Practical example: navigation */

1.9. LAYOUT AND POSITIONING 27

.nav > ul {
/* Style only top-level Llist */
display: flex;

}

.nav ul {
/* Style ALL Llists (including dropdowns) */
list-style: none;

}

1.9 Layout and Positioning

Q1.29: What are the different methods of positioning elements (static, relative,
absolute, fixed, sticky)? [Mid]

CSS positioning controls how elements are positioned in the document flow and relative to
other elements or the viewport.

The static position is the default where elements follow normal document flow and are laid
out based on their order in the HTML and display type. Top, right, bottom, and left properties
have no effect on static elements.

The relative position keeps the element in the normal flow but allows offsetting it using top,
right, bottom, and left properties. The element’s original space is preserved, so other elements
don't shift to fill it. Relative positioning creates a positioning context for absolutely positioned
children.

The absolute position removes the element from the normal flow, and it no longer affects other
elements’ positions. It positions relative to its nearest positioned ancestor (any ancestor with
position other than static), or relative to the initial containing block if no positioned ancestor
exists. This is commonly used for dropdown menus, tooltips, and overlays.

The fixed position removes the element from the normal flow and positions it relative to the
viewport. It stays in the same place even when scrolling, making it ideal for sticky headers,
modal overlays, and back-to-top buttons.

The sticky position is a hybrid that behaves like relative until the element reaches a specified
scroll position, then becomes fixed. It's perfect for section headers that stick to the top while
scrolling through that section.

In layout work, relative positioning is used to nudge elements slightly or to create a positioning
context for absolute children, absolute positioning for components that overlay other content,
fixed positioning for persistent Ul elements, and sticky positioning for headers that should
remain visible while scrolling their section.

/* Static: default, normal flow */
.static {

position: static;

/* top, left, etc. have no effect */

28

/* Relative: offset from normal position */
.relative {

position: relative;

top: 10px;

left: 20px;

/* Original space is preserved */

/* Absolute: positioned within nearest positioned ancestor */
.parent {
position: relative; /* Creates positioning context */

}

.absolute {
position: absolute;
top: 0O;
right: o;
/* Removed from flow, positioned within .parent */

/* Fixed: positioned relative to viewport */
.fixed-header {

position: fixed;

top: 0;

left: 0;

width: 100%;

/* Stays in place when scrolling */

/* Sticky: hybrid of relative and fixed */
.sticky-nav {

position: sticky;

top: 0;

/* Sticks to top when scrolling past it */
}

[Mid]

CHAPTER 1.

HTML & CSS

Q1.30: How does float work and what are common ways to clear floated elements?

Float is a CSS property originally designed for wrapping text around images, but it became the
primary layout technique before Flexbox and Grid existed. When an element is floated with
float: left or float: right, it's taken out of the normal document flow and shifted to the left
or right side of its container, allowing subsequent content to flow around it.

The floated element still occupies space horizontally, but parent containers collapse as if the
floated element has no height, which creates the need for clearing floats. This collapsing be-
havior is the main challenge with floats.

1.9. LAYOUT AND POSITIONING 29

There are several methods to clear floats and restore expected layout behavior. The clearfix
hack is the classic solution: adding a pseudo-element with clear: both to the container forces
it to expand around floated children. Modern clearfix uses ::after with content: "", display:
table, and clear: both

The overflow method sets overflow: auto Or overflow: hidden on the parent, which creates a
new block formatting context that contains floats, though this can have side effects like clipping
content or showing scrollbars.

The clear property itself can be applied to subsequent elements with clear: left, clear: right,
or clear: both to prevent them from wrapping around floats. The empty div method, now
discouraged, inserts an empty element with clear: both after floated elements.

While floats are largely superseded by Flexbox and Grid for layout, they're still useful for their
original purpose: text wrapping around images. Floats are occasionally used for magazine-
style layouts where text truly needs to flow around images, but for page layout and component
arrangement, modern layout methods are far superior.

/* Float for text wrapping */
.article-image {
float: left;
margin: @ 20px 20px 0O;
width: 300px;
}

/* Modern clearfix (best practice) */
.clearfix::after {

content: "";

display: table;

clear: both;

/* Usage */

<div class="clearfix">
<div style="float: left;">Floated</div>
<div style="float: right;">Floated</div>
<!-- Container expands around floats -->

</div>

/* Overflow method (creates BFC) */
.container {
overflow: auto;
/* Contains floats but may cause scrollbars */

}

/* Clear property on subsequent element */
.footer {

clear: both;

/* Appears below all floats */

}

30 CHAPTER 1. HTML & CSS

Q1.31: What is the difference between width: auto and width: 100%? [Junior]

While both width: auto and width: 1ee% are commonly used, they behave fundamentally differ-
ently in how they calculate element width.

The width: auto is the default value and makes the element calculate its width based on its
content and its containing block, respecting padding, border, and margin. For block elements,
auto width fills the available space while accounting for these properties, so the total width
(content plus padding plus border) fits within the parent. For inline-block or floated elements,
auto width shrinks to fit the content.

The width: 10e% explicitly sets the content width to match the parent’s content width, not
accounting for the element’'s own padding or border. This can cause overflow issues when
padding or borders are added because the total width becomes 100% plus padding plus bor-
der, exceeding the parent’s width.

This is commonly encountered when adding padding to full-width elements. With width: 10e%
and padding, the element extends beyond its container, often breaking layouts. The solution
is either using width: auto which adjusts automatically, or using box-sizing: border-box which
includes padding and border in the percentage width calculation.

For block-level elements that should fill their container, relying on the default width: auto be-
havior is generally appropriate, and width: 1ee% is only used when explicitly overriding a dif-
ferent width value or when working with absolutely positioned elements where auto doesn’t
provide the desired behavior.

The key insight is that auto is intelligent and context-aware, while 100% is literal and can cause
unexpected overflow when combined with padding and borders using the default content-box
model.

/* width: auto (default, smart behavior) */
.auto-width {

width: auto;

padding: 20px;

/* Total width fits within parent */

/* Content width adjusts to accommodate padding */

}

/* width: 100% (explicit, can overflow) */
.full-width {
width: 100%;
padding: 20px;
/* BAD: Total width = 100% + 40px padding */
/* Overflows parent container */

}

/* Fix with border-box */
.full-width-fixed {

width: 100%;

padding: 20px;

box-sizing: border-box;

/* GOOD: Padding included in 100% */

1.9. LAYOUT AND POSITIONING 31

}
/* Practical example */
.sidebar {
width: auto; /* Smart: adjusts for padding */

max-width: 300px;
padding: 20px;
}

Q1.32: How do you center an element horizontally and vertically using modern
approaches? [Mid]

Modern CSS provides several elegant methods for centering elements that have largely re-
placed older hacks involving absolute positioning and negative margins.

For horizontal centering of block elements with a defined width, the classic approach using
margin: @ auto still works perfectly. For text and inline elements, text-align: center on the
parent suffices.

However, Flexbox provides the most versatile horizontal centering with display: flex and
justify-content: center on the parent container. For vertical centering, Flexbox shines with
align-items: center for centering children along the cross axis, or align-self: center on the
child itself.

To center both horizontally and vertically simultaneously, combining display: flex,
justify-content: center,and align-items: center onthe parentisremarkably simple compared
to pre-Flexbox techniques.

CSS Grid offers similar capabilities with display: grid and place-items: center (shorthand for
both align-items and justify-items), Or place-content: center for centering the grid content
itself. For single items in a grid, margin: auto on the grid child centers it both ways.

Modern centering with absolute positioning uses position: absolute, top: 50% left: 50% and
transform: translate(-50%, -50%) to center elements precisely, which works even when dimen-
sions are unknown.

In layout work, Flexbox is the default for most centering needs because it's intuitive, flexible,
and handles both axes naturally. Grid is excellent when the centered element is part of a larger
grid layout. The transform approach is useful for overlays and modals that need to be perfectly
centered regardless of content size.

/* Horizontal: margin auto (classic) */
.centered-block {

width: 600px;

margin: @ auto;

}

/* Flexbox: most versatile */
.flex-container {
display: flex;

32 CHAPTER 1. HTML & CSS

justify-content: center; /* Horizontal */
align-items: center; /* Vertical */
height: 100vh;

}

/* Grid: clean and simple */
.grid-container {
display: grid;
place-items: center; /* Both axes */
height: 100vh;

}

/* Absolute positioning + transform */
.modal {

position: absolute;

top: 50%;

left: 50%;

transform: translate(-50%, -50%);

/* Works with unknown dimensions */

/* Text centering */
.text-center {
text-align: center;

}

Q1.33: What are the main concepts and properties of Flexbox? [Mid]

Flexbox is a one-dimensional layout system that excels at distributing space and aligning items
along a single axis, either horizontal or vertical. The fundamental concepts revolve around the
flex container and flex items.

The container is created by setting display: flex or display: inline-flex, which establishes a
flex formatting context for its children. The main axis is the primary direction items are laid
out, controlled by flex-direction with values row (default, horizontal), row-reverse, column
(vertical), or column-reverse. The cross axis runs perpendicular to the main axis.

On the container, justify-content controls alignment along the main axis with values like flex-
start, flex-end, center, space-between (items spread out with space between them), space-
around (space around each item), and space-evenly. The align-items property controls align-
ment along the cross axis with values stretch (default), flex-start, flex-end, center, and baseline.

The flex-wrap property determines whether items wrap to new lines with values nowrap (de-
fault), wrap, or wrap-reverse. The align-content property controls how multiple lines are dis-
tributed when wrapping occurs.

On flex items, flex-grow determines how much an item should grow relative to siblings when
there’s extra space, flex-shrink controls how much it should shrink when space is limited, and
flex-basis sets the initial size before growing or shrinking. The flex shorthand combines these
three properties. The align-self property allows individual items to override the container’s
align-items value.

1.9. LAYOUT AND POSITIONING 33

In Flexbox work, typical uses include navigation bars with space-between, card layouts that
should grow to fill available space, centering content both horizontally and vertically, and cre-
ating responsive layouts that stack on mobile but flow horizontally on desktop.

/* Flex container properties */
.flex-container {
display: flex;

flex-direction: row; /* Main axis direction */

justify-content: space-between;/* Main axis alignment */

align-items: center; /* Cross axis alignment */

flex-wrap: wrap; /* Allow wrapping */

gap: 20px; /* Space between items */
}

/* Flex item properties */

.flex-item {
flex-grow: 1; /* Grow to fill space */
flex-shrink: 1; /* Shrink if needed */
flex-basis: 200px; /* Initial size */

/* Shorthand */
flex: 1 1 200px; /* grow shrink basis */

/* Individual alignment override */
align-self: flex-start;

/* Common pattern: equal-width columns */
.column {
flex: 1; /* Shorthand for: 1 1 @ */

}

/* Common pattern: centered content */
.center {
display: flex;
justify-content: center;
align-items: center;

}

Q1.34: How does CSS Grid differ from Flexbox, and in which use cases are they
each more appropriate? [Senior]

CSS Grid and Flexbox are complementary layout systems with different strengths. The funda-
mental difference is dimensionality: Flexbox is one-dimensional, laying out items along a single
axis (either row or column), while Grid is two-dimensional, controlling both rows and columns
simultaneously. This distinction drives their appropriate use cases.

Flexbox is appropriate when working with a single row or column of items, when content size
should determine layout, when items need to wrap naturally, or when aligning items within a
container. Typical Flexbox use cases include navigation menus, card layouts that should flow

34 CHAPTER 1. HTML & CSS

and wrap, toolbars with icons, form controls arranged in a row, and vertically centering content.
Flexbox excels when the layout is content-driven, where items determine their own size and
distribute space among themselves.

Grid is used for complex two-dimensional layouts, when precise control over both rows and
columns is needed, when creating page-level layouts or dashboard interfaces, when items need
to span multiple rows or columns, or when the layout should drive content size rather than vice
versa. Grid is perfect for main page layouts with header, sidebar, content, and footer, magazine-
style layouts with items spanning varying numbers of rows and columns, gallery layouts with
items of different sizes, and form layouts where inputs align across both rows and columns.

The key insight is that Grid works from the container down defining an explicit grid that items
are placed into, while Flexbox works from the content up with items determining the layout
based on their size and flex properties.

In professional development, both are commonly used together: Grid for the overall page
structure and major layout regions, and Flexbox within those regions for arranging content.
They complement each other beautifully, and choosing between them depends on whether
thinking in terms of rows and columns together (Grid) or a single line of items (Flexbox).

/* Flexbox: one-dimensional, content-driven */
.navbar {

display: flex;

justify-content: space-between;

/* Items flow in a single row */

}

.cards {
display: flex;
flex-wrap: wrap;
gap: 20px;
/* Items wrap naturally based on size */

/* Grid: two-dimensional, Llayout-driven */
.page-layout {

display: grid;

grid-template-areas:

"header header header"

"sidebar content aside"

"footer footer footer";
grid-template-columns: 200px 1fr 200px;
grid-template-rows: auto 1fr auto;

/* Defines explicit 2D structure */

}

.gallery {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 20px;
/* Items fit into defined grid */

1.10. RESPONSIVE DESIGN 35

/* Combined: Grid for Llayout, Flex for content */
.dashboard {

display: grid;

grid-template-columns: repeat(3, 1fr);

gap: 20px;
}

.dashboard-card {
display: flex;
flex-direction: column;
/* Flexbox inside Grid cells */

}

1.10 Responsive Design

Q1.35: What are media queries and how are they used to create responsive de-
signs? [Junior]

Media queries are CSS rules that apply styles conditionally based on device characteristics
like screen width, height, orientation, or resolution. They're the foundation of responsive web
design, allowing a single codebase to adapt to different devices from mobile phones to large
desktop monitors.

The syntax uses the @media rule followed by one or more media features in parentheses. The
most common media feature is min-width, which applies styles when the viewport is at least
the specified width, and max-width, which applies styles up to the specified width.

In responsive development work, a mobile-first approach using min-width queries exclusively
is common practice, starting with mobile styles as the base and progressively enhancing for
larger screens. This ensures mobile users don't download unnecessary CSS and aligns with the
reality that mobile traffic often exceeds desktop.

Common breakpoints are 640px for small tablets and large phones, 768px for tablets, 1024px
for small laptops, and 1280px for desktops, though the specific values should be driven by
content and design rather than device sizes.

Media queries can target multiple conditions with logical operators: and combines condi-
tions, or (comma-separated) applies if any condition matches, and not negates a condition.
Beyond width, media queries can test for orientation: portrait Or landscape, hover: hover
for devices with hover capability, prefers-color-scheme: dark for dark mode preference, and
prefers-reduced-motion for respecting accessibility preferences.

In practice, media queries are placed either at the end of the stylesheet for simple overrides
or use component-level media queries grouping all responsive variations of a component to-
gether for better maintainability.

/* Mobile-first approach */
/* Base styles for mobile */

36 CHAPTER 1. HTML & CSS

.grid {
display: grid;
grid-template-columns: 1fr;
gap: 20px;

}

/* Tablet and up */
@media (min-width: 768px) {
.grid {
grid-template-columns: repeat(2, 1fr);
}
}

/* Desktop and up */
@media (min-width: 1024px) {
.grid {
grid-template-columns: repeat(3, 1fr);
}

/* Multiple conditions */
@media (min-width: 768px) and (orientation: landscape) {
.hero {
height: 60vh;
}

/* User preferences */
@media (prefers-color-scheme: dark) {
:root {
--color-bg: #lalala;
--color-text: #ffffff;

@media (prefers-reduced-motion: reduce) {
*{
animation-duration: ©.01ms !important;

¥
}

Q1.36: How do you handle responsive typography? [Mid]

Responsive typography ensures text remains readable and appropriately sized across all de-
vices and viewport widths. In typography work, several complementary techniques are used.

The foundation is setting a base font size on the root element, typically using a percentage like
font-size: 100% which respects user browser settings, or a pixel value like 16px. Then relative
units are used for all other typography: rem units for font sizes which are relative to the root
font size and provide consistent scaling, and em units for spacing properties like margin and
padding which scale with the element’s font size.

1.10. RESPONSIVE DESIGN 37

For responsive scaling, the root font size is adjusted at different breakpoints, which scales all
rem-based typography proportionally. More advanced is using viewport units like vw (viewport
width) to create truly fluid typography that scales smoothly with the viewport, though this
requires careful implementation to prevent text from becoming too small on mobile or too
large on desktop.

The modern approach uses the clamp() function which sets a minimum, preferred, and maxi-
mum size in one declaration. For example, font-size: clamp(irem, 2.5vw, 2rem) creates fluid ty-
pography that never goes below 1rem or above 2rem, scaling smoothly between those bounds.

Line-height is also adjusted responsively, using tighter leading for large headings and more
generous spacing for body text, with adjustments at breakpoints. The line-height should be
unitless (like 1.5) so it scales proportionally with font size.

For optimal readability, line lengths are maintained between 45-75 characters using max-width
with ch units, which represent character width. Responsive typography also considers font-
weight adjustments, with some developers increasing weight slightly on small screens for bet-
ter readability, and using variable fonts that allow fine-tuned weight adjustments across break-
points.

/* Base typography setup */
:root {
font-size: 100%; /* Respects user settings */

}

body {
font-family: system-ui, sans-serif;
line-height: 1.6;
font-size: 1rem; /* 16px if root is 100% */
}

/* Responsive scaling with rem */

hl { font-size: 2rem; } /* 32px */
h2 { font-size: 1.5rem; } /* 24px */
p { font-size: 1rem; } /* 1é6px */

@media (min-width: 768px) {
:root { font-size: 112.5%; } /* 18px base */
/* ALL rem-based sizes scale up */

}

/* Modern fluid typography with clamp */
hl {

font-size: clamp(2rem, 5vw, 4rem);

/* Min 2rem, 1ideal 5vw, max 4rem */

}

p{
font-size: clamp(lrem, 2.5vw, 1.25rem);
max-width: 65ch; /* Optimal Line length */
}

38 CHAPTER 1. HTML & CSS

/* Line-height adjustments */
hl { line-height: 1.2; } /* Tight for headings */
p { line-height: 1.6; } /* Generous for body */

Q1.37: What does mobile-first design mean, and why might you choose it? [Mid]

Mobile-first design is a development strategy where CSS for mobile devices is written as the
base styles, then min-width media queries are used to progressively enhance the design for
larger screens. This contrasts with the older desktop-first approach where desktop styles were
the default and mobile styles were added with max-width media queries.

In professional work, mobile-first is always used for several compelling reasons. Performance
is the primary benefit: mobile users only download the CSS they need, while desktop users
with typically faster connections download the additional enhancement styles. This is critical
because mobile users often have slower network connections and limited data plans.

The approach enforces progressive enhancement, starting with core functionality that works
everywhere and adding complexity only where it improves the experience. It forces prioritiza-
tion of content and features, identifying what's truly essential versus what's nice-to-have for
larger screens.

From a maintenance perspective, mobile-first is cleaner because features are added as screen
size increases rather than removing features and overriding styles as it decreases. This results
in less CSS overall and fewer specificity conflicts.

The mobile-first mindset aligns with current web usage patterns where mobile traffic often
exceeds desktop, making mobile the primary experience to optimize. Practically, it leads to
better responsive designs because the focus is on how to enhance a simple, functional interface
rather than how to strip down a complex one.

In CSS files, the structure follows a clear pattern: base styles that work on mobile, then progres-
sive enhancements at larger breakpoints that add layout complexity, additional visual elements,
and features that benefit from more screen real estate. The workflow is additive rather than
subtractive, which is more intuitive and less error-prone.

Pro Tip

Mobile-first development naturally leads to performance budgets and leaner code be-
cause every addition is questioned: "Does this improve the experience enough to justify
the additional bytes?”

Q1.38: What are some best practices for responsive images in CSS? [Mid]

Responsive images in CSS require balancing quality, performance, and layout flexibility. The
foundational rule is setting max-width: 100% and height: auto on images, which allows them
to scale down to fit their container while maintaining aspect ratio and never exceeding their
intrinsic size.

1.10. RESPONSIVE DESIGN 39

For layout control, modern CSS features like object-fit control how images scale within
their containers: object-fit: cover fills the container while cropping to maintain aspect ra-
tio, object-fit: contain scales to fit within the container showing the entire image, and
object-position controls which part of the image is visible when cropped.

For performance, appropriately sized images are served using the <picture> element or srcset
attribute in HTML, though CSS plays a role with image-set() for background images that allows
specifying different resolutions for standard and retina displays.

For background images, background-size: cover is used for hero images that should fill
their container, background-size: contain when the entire image must be visible, and
background-position to control focal points.

The aspect-ratio property is invaluable for preventing layout shift as images load, defining the
box dimensions before the image arrives. For critical hero images, the blur-up technique is
implemented using CSS: a tiny blurred version loads immediately via CSS background-image
while the full image loads, creating a perceived performance improvement.

The loading="lazy" attribute in HTML for below-the-fold images defers loading, though this
is HTML rather than CSS. For art direction where different crops are needed at different sizes,
CSS alone is insufficient, requiring the <picture> element.

In responsive design, images are often wrapped in containers with defined aspect ratios and
object-fit is used to handle varying image proportions gracefully.

/* Base responsive image styles */
img {
max-width: 100%;
height: auto;
/* Scales down but never exceeds natural size */

/* Container with aspect ratio (prevents Llayout shift) */
.image-container {

aspect-ratio: 16 / 9;

overflow: hidden;

.image-container img {
width: 100%;
height: 100%;
object-fit: cover;
object-position: center;

/* Background image responsiveness */
.hero {
background-image: url('hero-small.jpg');
background-size: cover;
background-position: center;
aspect-ratio: 21 / 9;

40 CHAPTER 1. HTML & CSS

@media (min-width: 768px) {
.hero {
background-image: url('hero-large.jpg');
¥
¥

/* High-DPI displays */
.logo {
background-image: image-set(
url('logo.png') 1x,
url('logo@2x.png') 2x
)
}

/* Prevent Layout shift */
.card-image {
aspect-ratio: 4 / 3;
width: 100%;
object-fit: cover;

}

Q1.39: How do you prevent horizontal scroll on mobile devices? [Junior]

Horizontal scroll on mobile devices is a common and frustrating issue caused by content ex-
tending beyond the viewport width. In responsive development work, this is prevented through
several defensive techniques.

The foundational rule is setting overflow-x: hidden on the body or html element, though this
treats the symptom rather than the cause. More important is identifying and fixing why content
overflows.

Common culprits include fixed-width elements wider than the viewport, typically large images
or embedded content, which are fixed by ensuring all images have max-width: 10e%. Viewport
units like 1eevw can cause overflow because they don't account for the scrollbar width, so they're
used cautiously or scrollbar width is subtracted when necessary.

Negative margins or absolute positioning can push content outside the viewport, which re-
quires careful auditing in responsive layouts. Very long unbroken text strings or URLs can
overflow, which are prevented with overflow-wrap: break-word and word-break: break-word

Pre-formatted code blocks are notorious offenders, which are wrapped in containers with
overflow-x: auto to create horizontal scrolling only where needed. Large tables are difficult
to make responsive, often requiring overflow-x: auto on a wrapper div to enable horizontal
scrolling on the table specifically rather than the entire page.

In mobile-first workflow, testing on actual devices or browser device emulation throughout
development catches overflow issues early. The meta viewport tag in HTML is essential, <meta
name="viewport" content="width=device-width, initial-scale=1"», aswithout it mobile browsers
use a virtual viewport and scale everything down.

1.10. RESPONSIVE DESIGN

41

CSS debugging techniques like temporarily adding * { outline: 1px solid red; } are also used

to visualize element boundaries and identify overflow sources.

/* Prevent horizontal overflow */
html, body {

overflow-x: hidden;

max-width: 100%;

/* Ensure images don't overflow */
img {

max-width: 100%;

height: auto;
}

/* Handle long text and URLs */
p, div {
overflow-wrap: break-word;
word-break: break-word;

/* Code blocks with contained scroll */
pre {

max-width: 100%;

overflow-x: auto;

/* Responsive tables */
.table-container {
width: 100%;
overflow-x: auto;
-webkit-overflow-scrolling: touch;

/* Prevent vw causing overflow */
.full-width {
width: 100%; /* Instead of 100vw */

/* Debug overflow issues */
* A
/* outline: 1px solid red; */
/* Uncomment to visualize elements */

42 CHAPTER 1. HTML & CSS

1.11 Advanced CSS

Q1.40: Can you explain how to use :nth-child, :nth-of-type, and related pseudo-
classes? [Mid]

These structural pseudo-classes select elements based on their position among siblings, en-
abling patterns like zebra striping, first/last special styling, and complex selection formulas.

The :nth-child(n) selector matches elements based on their position among all siblings regard-
less of type. For example, 1i:nth-child(3) selects the third child of its parent if it's an <1i>, while
li:nth-child(odd) selects odd-numbered list items.

The :nth-of-type(n) selector is similar but counts only siblings of the same type, so
p:nth-of-type(2) selects the second paragraph among its siblings, even if there are other ele-
ments between the first and second paragraphs.

These selectors are used extensively for creating visual patterns without adding classes to
markup. The formulas accept keywords like odd and even, specific numbers like 3, or alge-
braic expressions like 2n (every second element), 2n+1 (every second element starting from the
first, equivalent to odd), 3n (every third element), or 3n+2 (every third element starting from the
second).

Related pseudo-classes include :first-child and :last-child for first and last children,
:first-of-type and :last-of-type for first and last of a specific type, :only-child for elements
that are the only child, and :only-of-type for elements that are the only one of their type.

The :nth-last-child() and :nth-last-of-type() variants count from the end rather than the
beginning. A common gotcha is that :nth-child() counts all sibling elements even if the se-
lector has a type, so p:nth-child(2) fails if the second child isn't a paragraph. In such cases,
:nth-of-type() is usually what's needed.

/* Zebra striping: alternate row colors */
tr:nth-child(odd) {
background: #f5f5f5;

}

tr:nth-child(even) {
background: white;

}

/* Every third item */
.card:nth-child(3n) {
margin-right: @; /* Remove margin on 3rd, 6th, 9th... */

}

/* First and last styling */
li:first-child {

border-top-left-radius: 8px;
}

li:last-child {

1.11. ADVANCED CSS 43

border-bottom-left-radius: 8px;
}

/* nth-child vs nth-of-type difference */
/* HTML: <div><p></p><p></p></div> */

p:nth-child(2) {
/* Selects first <p> (it's 2nd child overall) */
}

p:nth-of-type(2) {
/* Selects second <p> (2nd paragraph) */
}

/* Complex formula: every 4th starting from 2nd */
li:nth-child(4n+2) {

background: yellow; /* 2nd, 6th, 10th... */
}

Q1.41: What is the difference between ::before and ::after? [Junior]

The ::before and ::after pseudo-elements create virtual elements that don't exist in the HTML
DOM but can be styled and positioned like real elements. The fundamental difference is their
position: ::before inserts content immediately before the element’s actual content (as the first
child), while ::after inserts content immediately after the element’s content (as the last child).

Both require the content property to function, even if it's an empty string. In CSS work, these
pseudo-elements are used extensively for decorative purposes that would clutter the HTML if
added as real elements.

Common use cases include adding icons before or after links, creating custom bullet points
for lists, adding quotation marks around blockquotes, creating decorative elements like trian-
gles or badges, displaying additional text labels, and generating geometry for complex visual
effects.

The key limitation is that pseudo-elements can only be applied to elements that can con-
tain content; they don't work on replaced elements like , <input>, or
. The pseudo-
elements inherit properties from their parent element and can be styled with any CSS proper-
ties. They're positioned relative to the parent element and participate in its layout.

For accessibility, content added via pseudo-elements is not selectable by users and may not be
announced by all screen readers, so they should only be used for decorative purposes, never
for meaningful content.

In practical development, ::before is used for icons or markers that precede content, and
: :after for status indicators, close buttons, or decorative elements that follow content. The
double colon syntax (:) is the CSS3 standard, distinguishing pseudo-elements from pseudo-
classes (:), though single colons still work for backwards compatibility.

44 CHAPTER 1. HTML & CSS

/* ::before - inserted as first child */
.note: :before {
content: '\ 26A@'; /* Warning symbol */
margin-right: ©.5em;
color: orange;

/* ::after - inserted as last child */
.external-link::after {
content: ' \ 2197'; /* External Llink 1icon */
font-size: 0.8em;

}

/* Quotation marks */
blockquote: :before {
content: '\ 201C'; /* Left double quote */

blockquote::after {
content: '\ 201D'; /* Right double quote */

/* Decorative elements */
.badge: :after {
content: 'New';
position: absolute;
top: 10px;
right: 10px;
background: red;
color: white;
padding: 4px 8px;
border-radius: 4px;

/* Clearfix using ::after */
.clearfix::after {

content: "";

display: table;

clear: both;

Q1.42: Can you describe how CSS transforms and transitions work? [Mid]

CSS transforms and transitions are powerful tools for creating visual effects and animations.

Transforms modify the visual rendering of an element without affecting document flow, apply-
ing geometric transformations like translation, rotation, scaling, and skewing. The transform
property accepts functions like translate(x, y) for moving elements, rotate(angle) for rota-
tion, scale(x, y) for resizing, skew(x, y) for slanting, and matrix transformations for complex
combined effects.

1.11. ADVANCED CSS 45

Transforms can be 2D or 3D, with 3D transforms requiring a perspective context. Importantly,
transforms don't affect layout, other elements aren’t pushed around when an element is trans-
formed. The transform-origin property controls the point around which transformations occur,
defaulting to the center but configurable to any position.

Transitions create smooth animations between property value changes. The transition prop-
erty specifies which properties to animate, the duration, the timing function (easing), and an
optional delay. Transitions are used to create smooth hover effects, animated state changes,
and polished micro-interactions.

For example, transition: all @.3s ease creates a 300-millisecond smooth transition for all
properties that change. For better performance, exact properties are specified like transition:
transform 0.3s ease, opacity 0.3s ease rather than using all.

The timing functions control the acceleration curve: ease starts slow, speeds up, then slows
down; linear maintains constant speed; ease-in starts slow; ease-out ends slow; ease-in-out
combines both; and cubic-bezier() provides custom curves.

For performance, transform and opacity are preferentially animated as they can be GPU-
accelerated, avoiding expensive properties like width, height, or margin which trigger layout
recalculation.

/* Transform: change appearance without affecting Llayout */
.card {

transform: translateY(©0);

transition: transform 0.3s ease;

.card:hover {
transform: translateY(-10px); /* Lift effect */

/* Multiple transforms (apply right to left) */
.icon {
transform: rotate(45deg) scale(1.2) translateX(1@px);

/* Transform origin */

.door {
transform-origin: left center; /* Rotate around Left edge */
transition: transform 0.5s ease;

.door:hover {
transform: rotateY(90deg);

}

/* Transitions: smooth property changes */
button {

background: blue;

transform: scale(1);

transition: background 0.3s ease,

46 CHAPTER 1. HTML & CSS

transform 0.2s ease;

button:hover {
background: darkblue;
transform: scale(1.05);

}

/* Performance-optimized animations */
.modal {

opacity: 0;

transform: scale(0.9);

transition: opacity ©.3s ease,

transform 0.3s ease;

/* GPU-accelerated properties */

}

.modal.active {
opacity: 1;
transform: scale(1);

}

Q1.43: How do CSS animations differ from transitions? [Mid]

While both transitions and animations create motion and visual effects, they differ fundamen-
tally in control and capability.

Transitions are implicit animations triggered by state changes, smoothly interpolating from one
property value to another when a CSS property changes due to user interaction or JavaScript.
They're simple, declarative, and require a trigger like :hover or a class change. Transitions are
perfect for hover effects, focus states, and simple state changes.

CSS animations, defined with @keyframes, are explicit sequences of style changes that can run
automatically, loop, reverse, and include multiple intermediate steps. Animations provide far
more control: keyframes are defined at various percentage points through the animation time-
line, creating complex multi-stage sequences.

Transitions are used for interactive feedback where the animation is a direct response to user
action, and animations for attention-grabbing effects, loading indicators, and self-running se-
quences that communicate information or brand personality.

Animations can start automatically without any trigger, loop infinitely or a specific number of
times with animation-iteration-count, reverse with animation-direction: alternate, pause with
animation-play-state, and delay their start.

The animation shorthand combines name, duration, timing function, delay, iteration count, di-
rection, fill mode, and play state. The animation-fill-mode controls what styles apply before
and after the animation runs: forwards keeps the final keyframe styles, backwards applies the
first keyframe styles during the delay, and both combines these behaviors.

1.11. ADVANCED CSS 47

For complex sequences with multiple stages, animations are essential, while for simple property
changes in response to interaction, transitions are more appropriate and easier to maintain.

/* Transition: triggered by state change */
.button {

background: blue;

transition: background 0.3s ease;

}

.button:hover {
background: darkblue; /* Transition triggers */

}

/* Animation: defined sequence, runs automatically */
@keyframes pulse {
0% {
transform: scale(1);
opacity: 1;
}
50% {
transform: scale(1.1);
opacity: 0.8;
}
100% {
transform: scale(1);
opacity: 1;

.notification {
animation: pulse 2s ease-in-out infinite;
/* Runs automatically and Lloops forever */

}

/* Complex animation with multiple properties */
@keyframes slideInFade {
0% {
opacity: o;
transform: translateY(20px);
¥
50% {
opacity: 0.5;
¥
100% {
opacity: 1;
transform: translateY(Q);

}

.modal {
animation: slideInFade 0.5s ease-out forwards;
/* forwards: keep final state after animation */

48 CHAPTER 1. HTML & CSS

}

/* Animation control properties */
.spinner {
animation-name: rotate;
animation-duration: 1s;
animation-timing-function: linear;
animation-iteration-count: infinite;

}

1.12 CSS Architecture

Q1.44: What are CSS preprocessors like SASS or LESS, and what benefits do they
offer? [Mid]

CSS preprocessors are scripting languages that extend CSS with programming features and
compile into standard CSS. SASS (Syntactically Awesome Style Sheets) and LESS are the most
popular, with SASS particularly dominant in professional development.

Preprocessors provide several significant benefits. Variables allow defining reusable values for
colors, spacing, and other properties throughout the stylesheet, though CSS custom properties
now provide similar functionality with runtime flexibility.

Nesting allows writing selectors that mirror HTML structure, reducing repetition and improving
readability, though excessive nesting can create overly specific selectors. Mixins are reusable
blocks of CSS that can accept arguments, perfect for vendor prefixes or complex patterns used
multiple times.

Functions enable calculations and color manipulations like darken($color, 10%) oOr
lighten($color, 20%). Partials and imports allow organizing CSS into multiple files that
compile into a single output file, improving code organization without HTTP overhead.

Mathematical operations enable responsive design calculations and sizing relationships. Con-
trol directives like @if, @for, and @each enable programmatic style generation. SASS's Scss syntax
(which looks like CSS with extra features) has largely won over the indented Sass syntax.

Modern CSS has adopted some preprocessor features like variables (custom properties) and
calc() for calculations, reducing but not eliminating the value of preprocessors. SASS is still
used for complex projects because mixins, nesting, and color functions significantly improve
developer experience and maintainability.

The compilation step integrates seamlessly into build processes with tools like webpack, Vite,
or Parcel.

// SASS features

// Variables
$primary-color: #BEOB31;
$spacing-unit: 8px;

1.12. CSS ARCHITECTURE

// Nesting
.nav {
background: $primary-color;

ul {
list-style: none;

1i {
display: inline-block;

a{

color: white;

&:hover { // & references parent selector
text-decoration: underline;

// Mixins

@mixin flex-center {
display: flex;
justify-content: center;
align-items: center;

}

.container {
@include flex-center;

}

// Functions
.button {
background: $primary-color;

&:hover {
background: darken($primary-color, 10%);

}

// Partials and imports
@import ‘'variables’;

@import 'mixins';

@import 'components/button’;

49

50 CHAPTER 1. HTML & CSS

Q1.45: Can you explain BEM (Block Element Modifier) naming convention and
why it's useful? [Mid]

BEM is a CSS naming methodology that creates clear, unambiguous class names describing
the relationship between HTML and CSS. BEM stands for Block Element Modifier, representing
the three types of components in this system.

A Block is an independent, reusable component like .card, .menu, or .button. An Element is a
part of a block that has no standalone meaning, named with the pattern block__element using
double underscores, like .card__title or .menu__item. A Modifier represents a different state or
variation of a block or element, using double hyphens like .button--primary Or .card--featured.

BEM provides several critical benefits in CSS architecture work. Specificity remains flat because
every selector is a single class, avoiding specificity wars and making styles predictable and easy
to override when needed.

The naming convention is self-documenting; reading the class name tells exactly what role it
plays and its relationship to other components. Styles are modular and portable; a block can
be moved to a different project and still works because it doesn’t depend on HTML structure
or cascading from parent elements.

Conflicts are avoided because blocks are namespaced, so .nav__item and .menu__item can coex-
ist without interference. The methodology scales well from small projects to large enterprise
applications.

The main criticism is that «class names can become verbose, like
.article_ comment-list_ item--highlighted, but this verbosity is intentional, prioritizing
clarity over brevity. BEM is used for component-based development, often combined with a
preprocessor where nesting makes writing BEM classes more convenient while maintaining
flat compiled CSS.

/* BEM naming convention */

/* Block: independent component */
.card {

border: 1px solid #ddd;

padding: 20px;
}

/* Element: part of block */
.card__title {
font-size: 1.5rem;
margin-bottom: 10px;

}

.card__body {
color: #333;

}

.card__footer {
border-top: 1px solid #eee;
padding-top: 10px;

1.12. CSS ARCHITECTURE 51

/* Modifier: variation of block or element */
.card--featured {

background: #f9f9f9;

border-color: #BEOB31;

.card__title--large {
font-size: 2rem;

}

/* HTML structure */

<div class="card card--featured">
<h2 class="card__title card__title--large">Title</h2>
<div class="card__body">Content</div>
<div class="card__footer">Footer</div>

</div>

/* SASS makes BEM easier to write */
.card {
border: 1px solid #ddd;

__title {
font-size: 1.5rem;

--large {
font-size: 2rem;
}
}
--featured {
background: #f9f9f9;
}

}

Q1.46: What are CSS Modules in the context of modern frameworks? [Senior]

CSS Modules are a build-time transformation that scopes CSS locally to components by au-
tomatically generating unique class names, solving the global scope problem of traditional
CSS.

In modern JavaScript frameworks like React, Vue, or Angular, CSS Modules allow writing CSS
that looks normal but compiles to locally-scoped selectors, eliminating naming conflicts and
unintended style inheritance. When importing a CSS Module file, an object mapping original
class names to the generated unique names is received, which is then applied to elements in
components.

For example, writing .button { ... } in a CSS Module might compile to .button_ 3x4kl { ...
} with a unique hash, ensuring it never conflicts with other button styles in the application.

52 CHAPTER 1. HTML & CSS

CSS Modules provide significant architectural benefits in component development. Styles are
truly modular and co-located with the components they style, making components portable
and self-contained. There's no need for elaborate naming conventions like BEM because scop-
ing is automatic.

Dead code elimination is possible because build tools can determine which CSS is actually
used. The mental model is simpler because plain CSS is written without worrying about global
conflicts.

Composition allows extending styles from other modules using the composes keyword, enabling
style reuse without CSS cascade complexity. The developer experience is excellent: the full
power of CSS with standard syntax and tooling support is available, unlike CSS-in-JS solutions
that require learning new APIs.

CSS Modules are particularly valuable in component-based architectures where each compo-
nent should be independent and reusable. The main tradeoff is requiring a build step and
losing some flexibility of global styles, though opting out of scoping with :global() is possible
when needed for third-party integration or truly global styles.

/* Button.module.css */
.button {
padding: 1@px 20px;
border: none;
border-radius: 4px;

}

.primary {
composes: button;
background: #BE©B31;
color: white;

}

.secondary {
composes: button;
background: #fofefe;
color: #333;

¥

/* Button.jsx (React example) */
import styles from './Button.module.css';

function Button({ variant, children }) {
return (
<button className={styles[variant]}>
{children}
</button>
)
}

/* Compiled CSS output (simplified) */
.Button_button__3x4kl {
padding: 1@px 20px;

1.12. CSS ARCHITECTURE 53

border: none;
border-radius: 4px;

}

.Button_primary__7j2k9 {
background: #BE©B31;
color: white;

}

/* Global escape hatch */
:global(.legacy-widget) {
/* Not scoped, remains .legacy-widget */

}

Q1.47: How do you organize and maintain large-scale CSS code bases? [Senior]

Organizing large-scale CSS requires architectural discipline and consistent patterns. In enter-
prise development work, several complementary strategies are followed.

File organization follows a modular structure: separate directories are created for base styles
(resets, typography, global styles), utilities (helper classes), components (reusable Ul compo-
nents), layouts (page structure patterns), and pages (page-specific styles when necessary).

The ITCSS (Inverted Triangle CSS) methodology organizes CSS by specificity from generic to
specific: settings (variables), tools (mixins and functions), generic (resets), elements (bare HTML
elements), objects (layout patterns), components (Ul components), and utilities (helper classes).
This structure minimizes specificity conflicts and creates predictable cascading.

Naming conventions are critical at scale; BEM is used for components, providing clear relation-
ships and avoiding conflicts. For utility classes, functional naming like .mt-4 for margin-top or
.flex-center is followed.

A component-driven approach treats each Ul element as an independent module with its own
CSS file, making code discoverable and maintainable. Documentation is essential; a living
style guide is maintained showing all components with usage examples, which serves as both
documentation and a testing ground.

CSS Modules or scoped styles in frameworks prevent global pollution and make components
truly independent. Build processes with preprocessors enable features like variables, nesting,
and imports while keeping the output optimized.

Code review standards ensure consistency: checking for specificity creep, avoiding !impor-
tant except in utilities, preferring composition over duplication, and maintaining separation
between structure and skin. Performance budgets prevent CSS bloat by setting file size limits
and tracking them in Cl. Critical CSS extraction ensures above-the-fold content renders quickly.

The key is treating CSS as a first-class concern with the same architectural rigor applied to
JavaScript, not an afterthought.

54 CHAPTER 1. HTML & CSS

1.13 CSS Performance
Q1.48: How do you handle CSS performance for large sites or applications? [Senior]

CSS performance optimization involves reducing file size, minimizing render-blocking, and en-
suring efficient browser parsing and rendering. In performance optimization work, multiple
strategies are employed across the development lifecycle.

For file size reduction, CSS is minified in production builds, removing whitespace, comments,
and shortening values. Unused CSS is removed using tools like PurgeCSS or UnCSS that analyze
HTML and JavaScript to eliminate unused selectors, which can reduce CSS by 80% or more in
frameworks like Bootstrap or Tailwind.

Code splitting is employed, loading only the CSS needed for the current page rather than a
monolithic stylesheet, which is achievable through dynamic imports in modern build tools.

For selector performance, selectors are kept simple because complex selectors like
div.container > ul li:nth-child(odd) a require more browser work to match than .nav-link.
Universal selectors and deeply nested rules are avoided where possible.

For render performance, expensive properties are minimized: transform and opacity are pre-
ferred for animations because they're GPU-accelerated and don’t trigger layout or paint, while
properties like width, height, margin, and padding trigger expensive reflow. Layout thrashing is
avoided by batching DOM reads and writes in JavaScript.

For loading performance, critical CSS is implemented, inlining above-the-fold styles in the
<head> to enable fast first paint, then loading the full stylesheet asynchronously. rel="preload"
is used for fonts and critical resources. HTTP/2 multiplexing is leveraged to load multiple CSS
files efficiently. Caching strategies are implemented with versioned filenames and long cache
headers.

For monitoring, Chrome DevTools Performance panel is used to identify paint and layout bot-
tlenecks, Lighthouse to audit overall performance, and Coverage tab to find unused CSS. The
most impactful optimizations are typically removing unused CSS, implementing critical CSS,
and avoiding render-blocking resources in the critical rendering path.

Q1.49: What is the render-blocking effect of CSS and how can it be minimized?
[Senior]

CSS is render-blocking by default, meaning browsers won't display content until CSS is down-
loaded and parsed because painting before styles are available would cause a flash of unstyled
content (FOUC). While this ensures consistent presentation, it delays first paint and creates
perceived slowness, especially on slow networks.

In performance optimization work, render-blocking CSS is minimized through several tech-
niques. The most effective is extracting and inlining critical CSS, the minimal CSS needed to
render above-the-fold content, directly in the HTML <head>. This allows the browser to render
visible content immediately while the full stylesheet loads asynchronously.

Tools like Critical, Penthouse, or Critters automate critical CSS extraction by rendering the
page in a headless browser and determining which styles apply to the initial viewport. The

1.13. CSS PERFORMANCE 55

full stylesheet is then loaded asynchronously using JavaScript, media attribute manipula-
tion (like <1ink rel="stylesheet" href="styles.css" media="print" onload="this.media="'all'">),
or the rel="preload" technique.

For multi-page applications, page-specific critical CSS bundles can be created rather than one
universal critical CSS file. Code splitting allows loading CSS on-demand for route-based or
component-based chunks, ensuring users only download what's needed for the current view.

Using the media attribute appropriately prevents blocking for non-applicable stylesheets,
like <1ink rel="stylesheet" href="print.css" media="print"> which doesn't block rendering for
screen users.

Preloading critical resources with <link rel="preload" href="critical.css" as="style"> gives
the browser early hints about important resources. Avoiding @import in CSS is important be-
cause it creates sequential dependencies that block rendering; instead, build tools are used to
concatenate files or HTTP/2 multiplexing is leveraged.

The balance is between performance (fast first paint) and user experience (avoiding FOUC),
which critical CSS elegantly solves by ensuring styled initial content while deferring non-critical
styles.

<!-- Critical CSS approach -->
<!DOCTYPE html>
<html>
<head>
<!-- Inline critical CSS for above-fold content -->
<style>
body { margin: @; font-family: sans-serif; }
.header { background: #333; color: white; padding: 20px; }
.hero { height: 8@vh; background: #eee; }
</style>

<!-- Async load full stylesheet -->

<link rel="preload" href="styles.css" as="style"
onload="this.onload=null;this.rel="'stylesheet'">

<noscript><link rel="stylesheet" href="styles.css"></noscript>

</head>
<body>
<!-- Content renders immediately with critical styles -->
</body>
</html>
<!-- Media attribute technique -->

<link rel="stylesheet" href="styles.css"
media="print"
onload="this.media="'all"'">

<!-- Preload + defer -->

<link rel="preload" href="styles.css" as="style">

<link rel="stylesheet" href="styles.css" media="print
onload="this.media="'all"'">

56 CHAPTER 1. HTML & CSS

Q1.50: What are critical CSS and how do you implement it? [Senior]

Critical CSS is the minimal subset of CSS required to render above-the-fold content on initial
page load. By inlining this CSS in the HTML <head>, the browser can paint visible content imme-
diately without waiting for external stylesheets to download, dramatically improving perceived
performance and First Contentful Paint (FCP) metrics.

In performance optimization practice, implementing critical CSS involves several steps. First,
above-the-fold content is identified by analyzing what appears in the initial viewport at com-
mon screen sizes, typically focusing on the primary desktop and mobile viewports.

Second, the CSS rules that apply to this content are extracted, which can be done manually for
simple sites but requires automation for complex ones. Tools like Critical (Node.js package),
Penthouse, Critters (integrated in many build tools), or online services automate extraction by
rendering the page in a headless browser, capturing the viewport, and analyzing computed
styles.

Third, the extracted critical CSS is inlined directly in a <style> tag in the HTML document’s
<head>. Fourth, the full stylesheet is loaded asynchronously so it doesn’t block rendering, using
techniques like media attribute manipulation, preload with JavaScript fallback, or async loading
libraries.

Fifth, duplication is eliminated by ensuring the critical CSS subset doesn't inflate the total CSS
size excessively. In practice, critical CSS extraction is integrated into the build process, generat-
ing page-specific critical CSS for multi-page apps or route-specific critical CSS for single-page

apps.

The tradeoff consideration is file size: inlining too much CSS increases HTML size and delays
initial byte, while too little causes layout shifts and FOUC. The aim is for critical CSS under 14KB
(the size of the first TCP congestion window) to ensure it arrives in the first round trip.

For dynamic sites, generating critical CSS during the build for common paths and falling back
to comprehensive CSS for edge cases balances performance and maintainability.

1.14 Modern CSS

Q1.51: What are CSS Custom Properties (variables) and how do they differ from
preprocessor variables? [Mid]

CSS Custom Properties, commonly called CSS variables, are native CSS entities that store
reusable values and can be updated dynamically at runtime. Unlike preprocessor variables
which are compiled away before the browser sees them, CSS variables are live values that cas-
cade and inherit like regular CSS properties.

In modern CSS development, this runtime nature provides powerful capabilities that pre-
processor variables cannot match. Custom properties are defined with the -- prefix like
--primary-color: #BE@B31 and accessed with the var() function like color: var(--primary-color).

They cascade and inherit, meaning a variable defined on a parent element is available to all
descendants. They can be scoped to specific selectors, allowing different values in different

1.14. MODERN CSS 57

contexts, like defining --button-bg differently for primary and secondary button variants.

They can be updated dynamically with JavaScript using
element.style.setProperty('--theme-color', 'blue'), enabling runtime theming and dy-
namic styling impossible with preprocessors. The var() function accepts a fallback value as a
second parameter: var(--custom-color, blue) uses blue if --custom-color is undefined.

They work with calc() and other CSS functions, enabling dynamic calculations like
calc(var(--base-spacing) * 2). Custom properties are used extensively for design token sys-
tems where semantic names like --color-primary map to actual values, making theme creation
and maintenance straightforward.

Dark mode implementation is elegant: toggle a class on the root element and redefine color
variables. Component-level customization allows passing variables down to components with-
out modifying their internal CSS.

The limitations compared to preprocessors are that custom properties only store values, not
entire rule sets (no equivalent to mixins), and they have browser support limitations in older
browsers, though current support is excellent.

/* Define custom properties */
:root {
--color-primary: #BEOGB31;
--color-text: #333;
--spacing-unit: 8px;
--font-size-base: 16px;

/* Use with var() */

.button {
background: var(--color-primary);
padding: calc(var(--spacing-unit) * 2);
font-size: var(--font-size-base);

}

/* Scoped variables */
.card {
--card-padding: 20px;
padding: var(--card-padding);
}

.card--compact {
--card-padding: 1@px; /* Override for variant */

/* Fallback values */
.element {
color: var(--custom-color, black);
/* Uses black if --custom-color undefined */

}

/* Dark mode with variables */

58 CHAPTER 1. HTML & CSS

:root {
--bg: white;
--text: black;
}

[data-theme="dark"] {
--bg: black;
--text: white;

}

body {
background: var(--bg);
color: var(--text);

}

/* Dynamic update with JavaScript */
document.documentElement.style
.setProperty('--color-primary', '#FF0000');

Q1.52: How does the calc() function work and when is it useful? [Mmid]

The calc() function performs mathematical calculations in CSS, allowing mixing of units and
creating dynamic sizing and spacing based on mathematical relationships. In responsive design
work, calc() solves problems that would otherwise require JavaScript or awkward workarounds.

The function accepts addition (+), subtraction (-), multiplication (*), and division (/) operators,
with the critical feature that different units like percentages and pixels can be mixed: width:
calc(100% - 8opx) creates a width that's the full container minus 80 pixels, impossible with
pure percentages or pure pixels alone.

The operators must be surrounded by spaces for addition and subtraction to disambiguate
from signs in negative numbers. calc() is used extensively for several scenarios: creating fluid
layouts with fixed margins, like a sidebar that's calc(10e% - 3eepx) to account for a fixed-width
element; responsive spacing systems where values are multiples of a base unit, like margin:
calc(var(--spacing-unit) * 3); adjusting for viewport units while maintaining minimum values,
like font-size: calc(irem + @.5vw) for fluid typography; accounting for scrollbar width by sub-
tracting from 100vw; creating geometric shapes and complex layouts with precise calculations;
and working with CSS custom properties to create flexible design token systems.

The function can be nested for complex calculations and works with min(), max(), and clamp()
for even more powerful dynamic sizing.

Common use cases include full-height layouts accounting for header height: height:
calc(1@evh - 8epx), equal-height cards with varying padding, and responsive grids with fixed
gutters. Browser support is excellent across all modern browsers, making calc() a reliable tool
for production development.

/* Mix units: percentage and pixels */
.main-content {
width: calc(100% - 250px);

1.14. MODERN CSS 59

/* Full width minus fixed sidebar */

}
/* Full viewport height minus header */
.hero {
height: calc(1eevh - 80px);
}

/* Spacing system with multiplication */
:root {
--spacing: 8px;

}
.card {
padding: calc(var(--spacing) * 3); /* 24px */
margin-bottom: calc(var(--spacing) * 2); /* 16px */
}

/* Fluid typography */
hl {
font-size: calc(1l.5rem + 2vw);
/* Grows with viewport, base 1.5rem */

}

/* Grid with fixed gaps */
.grid {
display: grid;
grid-template-columns: repeat(3, calc((100% - 4@px) / 3));

gap: 20px;
/* 3 columns accounting for 2 gaps of 20px each */
}
/* Complex nested calc */
.element {
width: calc((100% - (2 * 20px)) / 3);
}

/* With min/max for constraints */
.responsive {

width: min(calc(100% - 40px), 1200px);

/* Never exceeds 1200px or 100% - 40px */
}

Q1.53: How do you implement dark mode or theme switching using CSS variables?
[Senior]

Implementing dark mode with CSS custom properties creates a maintainable theming system
that can switch instantly without reloading stylesheets. In theming implementations, a multi-
layered approach is used that separates color values from semantic meaning.

60 CHAPTER 1. HTML & CSS

First, all theme colors are defined as CSS custom properties on the :root element for the
default (typically light) theme, using semantic names like --color-background, --color-text,
--color-primary, rather than literal names like --white or --blue

Then a theme variation (dark mode) is created by redefining these same variables under a
scoping selector like [data-theme="dark"] or .dark-theme. Components reference the semantic
variables, remaining agnostic about which theme is active.

Switching themes is achieved by toggling a data attribute or class on the root or body element,
which JavaScript handles based on user preference, system preference, or manual toggle. For
respecting system preferences, the prefers-color-scheme media query is used to set the default
theme, then manual override is allowed that persists in localStorage.

The implementation involves several layers: primitive color values defining the actual colors,
semantic tokens mapping purpose to primitives (background, text, borders), and component-
specific tokens deriving from semantic tokens. This creates flexibility where changing
--color-primary updates all primary-colored elements across both themes.

Images and assets that need theme-specific versions are handled using CSS filters or swapping
sources. For optimal user experience, flash of wrong theme is prevented by reading the pref-
erence from localStorage in a blocking inline script before body content renders, applying the
appropriate theme class immediately.

The approach scales well because adding new themes is just defining a new set of variable
overrides, and components automatically adapt without modification.

/* Define Llight theme (default) */
:root {
--color-bg: #ffffff;
--color-text: #333333;
--color-primary: #BEOB31;
--color-border: #cccccc;
--color-surface: #f5f5f5;

/* Define dark theme */

[data-theme="dark"] {
--color-bg: #lalala;
--color-text: #e0@e0e0;
--color-primary: #ff5252;
--color-border: #444444;
--color-surface: #2a2a2a;

/* Use semantic variables in components */
body {

background: var(--color-bg);

color: var(--color-text);

}

.card {
background: var(--color-surface);

1.14. MODERN CSS

border: 1px solid var(--color-border);

.button--primary {
background: var(--color-primary);
color: var(--color-bg);

}

/* System preference detection */
@media (prefers-color-scheme: dark) {
:root {
--color-bg: #lalala;
--color-text: #e0e0e0;
/* Apply dark theme by default */

}

// JavaScript theme switcher
const theme = localStorage.getItem('theme') ||
(window.matchMedia(' (prefers-color-scheme: dark)"').matches
? 'dark' : 'light');

document.documentElement.setAttribute('data-theme', theme);

function toggleTheme() {
const current = document.documentElement
.getAttribute('data-theme");
const next = current === 'dark' ? 'light' : 'dark’;

document.documentElement.setAttribute('data-theme’, next);
localStorage.setItem('theme', next);

}

// Prevent flash of wrong theme

// In <head> before <body>:

<script>

(function() {
const theme = localStorage.getItem('theme') ||

(window.matchMedia(' (prefers-color-scheme: dark)').matches
? 'dark' : 'light');

document.documentElement.setAttribute('data-theme', theme);

NOs

</script>

62 CHAPTER 1. HTML & CSS

Q1.54: What are CSS-in-JS solutions and how do they differ from standard CSS?

[Senior]

CSS-in-JS solutions like styled-components, Emotion, or JSS write styles in JavaScript rather
than separate CSS files, generating CSS at runtime or build time. In React development work,
these libraries fundamentally change the styling paradigm by co-locating styles with compo-
nents and leveraging JavaScript's full programming capabilities.

The core differences from standard CSS are scoping and encapsulation: styles are automatically
scoped to components, eliminating naming conflicts without conventions like BEM. Dynamic
styling becomes straightforward using JavaScript variables, props, and logic directly in style
definitions, rather than toggling classes or inline styles.

Theming is built-in with theme providers that pass values through context, making dark mode
and brand variations simple. Dead code elimination is automatic because styles are imported
like JavaScript modules, allowing bundlers to tree-shake unused styles.

The developer experience includes benefits like type safety when using TypeScript, editor au-
tocompletion for style properties, and co-locating styles with component logic for easier rea-
soning.

However, CSS-in-JS comes with significant tradeoffs. Runtime libraries add JavaScript over-
head and can impact performance because styles are generated and injected during render,
potentially causing style recalculation. Build-time solutions like Linaria or Compiled mitigate
this by extracting CSS at compile time.

Styling flexibility is powerful but can lead to antipatterns like excessive dynamic styling that
hurts performance. Debugging can be harder with generated class names, though develop-
ment modes use readable names. Server-side rendering requires careful configuration to avoid
flash of unstyled content and hydration mismatches. Bundle size increases from the library run-
time.

In architecture decisions, CSS-in-JS is chosen for component libraries and design systems
where the dynamic styling and scoping benefits outweigh the runtime cost, but CSS Mod-
ules or utility-first frameworks like Tailwind are preferred for performance-critical applications
or when the team prefers standard CSS workflows.

// styled-components example
import styled from 'styled-components';

// Component with scoped styles
const Button = styled.button’

background: ${props => props.primary ? '#BE@GB31l' : '#e@e0e@'};
color: ${props => props.primary ? ‘'white' : 'black'};
padding: ${props => props.size === ‘'large' ? '15px 30px' : '1l@px 20px'};

border: none;
border-radius: 4px;
&:hover {

opacity: 0.9;

}

3

1.14. MODERN CSS

// Usage with props
<Button primary size="large">Click Me</Button>

// Theming
const theme = {
colors: {
primary: '#BE©B31',
text: '#333°',

Ts
spacing: {
unit: 8,
s
s

const ThemedButton = styled.button’
background: ${props => props.theme.colors.primary};
padding: ${props => props.theme.spacing.unit * 2}px;

B

// Wrap app with theme provider

<ThemeProvider theme={theme}>
<ThemedButton />

</ThemeProvider>

// vs Standard CSS Modules
import styles from './Button.module.css';

<button className={ ${styles.button} ${primary ? styles.primary :

Click Me
</button>

Y

63

JavaScript

JavaScript is the programming language of the web, powering interactive experiences across
billions of websites and applications. As a frontend developer in 2026, mastering JavaScript
fundamentals is non-negotiable. This chapter explores the core concepts, patterns, and pitfalls
you'll encounter in modern JavaScript development.

2.1 Core Concepts

Q2.1: What is the difference between == and ===? [Junior]

The == operator performs loose equality comparison with type coercion, while === performs
strict equality comparison without type coercion. When using ==, JavaScript attempts to con-

vert both operands to the same type before comparing them. With ===, both the value and
type must match exactly.

In practice, Always prefer === because it avoids unexpected behavior from type coercion. The

== operator follows complex coercion rules that can lead to counterintuitive results and bugs
that are difficult to track down.

// Loose equality with type coercion

console.log(5 == '5'); // true - string coerced to number
console.log(true == 1); // true - boolean coerced to number
console.log(null == undefined); // true - special case
console.log('' == 0); // true - empty string coerced to ©

// Strict equality without type coercion

console.log(5 === '5'); // false - different types
console.log(true === 1); // false - different types
console.log(null === undefined); // false - different types
console.log('' === 0); // false - different types

65

FREE SAMPLE

Thank you for reading this free sample!

This sample includes:
« Complete Table of Contents
* Full chapter structure overview

* Entire first chapter with all questions & answers

The full book contains 200+ interview questions

with detailed answers and code examples.

Get the complete book at:

easyinterview.me

© 2026 EasylInterview.me - All rights reserved

